EXIM's Exit: The Real Effects of Trade Financing by Export Credit Agencies

Adrien Matray
(UC Berkeley, NBER, CEPR)

Karsten Müller

Chenzi Xu (UC Berkeley, NBER, CEPR)

Poorya Kabir

Imperial

Motivation

Export Credit Agencies (ECAs) aim to increase exports by supplying trade financing

Ubiquitous in both emerging and advanced economies:

- In 90 countries that generate 92% of global exports [Distribution]

The most common tool of industrial policy (Juhasz, Lane, Oehlsen, and Perez, 2023)

Motivation

Export Credit Agencies (ECAs) aim to increase exports by supplying trade financing


Ubiquitous in both emerging and advanced economies:

- In 90 countries that generate 92% of global exports [Distribution]

The most common tool of industrial policy (Juhasz, Lane, Oehlsen, and Perez, 2023)

Question: What is their impact?

2015–2019 Shutdown of the Export-Import Bank of the United States (EXIM)

Due to a lapse in EXIM Bank's authority, as of July 1, 2015, the Bank is unable to process applications or engage in new business or other prohibited activities. For

Context

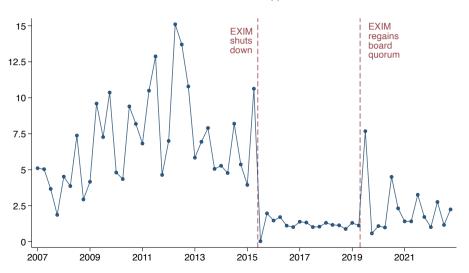
2015–2019 Shutdown of the Export-Import Bank of the United States (EXIM)

Full shutdown (July-Dec 2015):
 Tea Party movement

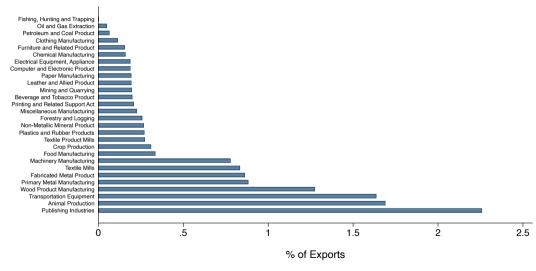
Context

2015–2019 Shutdown of the Export-Import Bank of the United States (EXIM)

Full shutdown (July-Dec 2015):
 Tea Party movement


- No quorum on Board (2016–2019):

Partisan gridlock in Obama presidency



EXIM's shutdown led to a collapse in new trade financing

Total value of new financial support (\$B): -84%

We use variation in pre-shutdown reliance on EXIM financing

1. Does EXIM's shutdown affect the real economy?

- 1. Does EXIM's shutdown affect the real economy?
 - Firm level: No, exporting firms are unconstrained → EXIM was a "profit windfall"
 - Industry level: No, EXIM reallocated export market share (business stealing) → did not create trade

1. Does EXIM's shutdown affect the real economy? Yes

- <u>Firm level</u>: ↓ exports, total revenues, K, L
- Industry level: ↓ \$1 financing = ↓ \$5 exports

1. Does EXIM's shutdown affect the real economy? Yes

```
- Firm level: ↓ exports, total revenues, K, L
```

```
- Industry level: ↓ $1 financing = ↓ $5 exports
```

2. Shutdown lowers average firm output ... but does it reduce misallocation?

1. Does EXIM's shutdown affect the real economy? Yes

```
- <u>Firm level</u>: ↓ exports, total revenues, K, L
```

```
- Industry level: ↓ $1 financing = ↓ $5 exports
```

- 2. Shutdown lowers average firm output ... but does it reduce misallocation? Not in our context
 - Capital contracts more for higher MRPK firms: ↑ misallocation

1. Does EXIM's shutdown affect the real economy? Yes

```
- <u>Firm level</u>: ↓ exports, total revenues, K, L
```

```
- Industry level: ↓ $1 financing = ↓ $5 exports
```

2. Shutdown lowers average firm output ... but does it reduce misallocation? Not in our context

- Capital contracts more for higher MRPK firms: ↑ misallocation

3. What framework rationalizes these results?

1. Does EXIM's shutdown affect the real economy? Yes

```
- <u>Firm level</u>: ↓ exports, total revenues, K, L
```

- Industry level: ↓ \$1 financing = ↓ \$5 exports

- 2. Shutdown lowers average firm output ... but does it reduce misallocation? Not in our context
 - Capital contracts more for higher MRPK firms: ↑ misallocation

3. What framework rationalizes these results? Endogenous wedges in market for trade financing

Contribution to the literature

1. Export Credit Agencies

Germany (Felbermayr Yalcin, 13); Austria (Badinger Url, 13); Pakistan (Zia, 2008); US (Desai Hines, 08; Benmelech Monteiro, 23)

→ Causal estimates of the impact of ECAs on firms and exports, and impact on misallocation

2. Finance and Trade

Bank credit and export volumes: Amiti Weinstein, 11; Chor Manova, 12; Manova, 13; Paravisini Rappoport Schnabl Wolfenzon, 14; Demir Michalski Ors, 17; Hombert Matray, 18; Xu, 22; Beaumont Lenoir, 23; Bruno Shin, 23; Monteiro Moreira, 23

Bank networks and export patterns: Michalski Ors, 12; Niepmann Schmidt-Eisenlohr, 17; Paravisini Rappoport Schnabl, 23; Xu Yang, 24

 \rightarrow Demonstrates specificity of trade financing \neq omnibus firm credit shock

3. Trade and Misallocation

Khandelwal Schott Wei, 13; Chaney 16; De Loecker Goldberg Khandelwal Pavcnik, 16; Berthou Chung Manova Bragard, 20; Finlay, 21; Bai Jin Lu, 24

→ Identifies specific wedges and highlights importance of financing frictions

4. Design and Effects of industrial policies

Harrison Rodriguez-Clare, 10; Juhasz, 18; Itskhoki Moll, 19; Costinot Rodriguez Clare, Werning, 20; Choi Levchenko, 21; Lane, 23; Juhasz Lane Oehlsen Perez, 22; Juhasz Steinwender, 23; Juhasz Lane Rodrik, 23; Ottonello Perez Witheridge 24; Adao Becko Costinot Donaldson, 24; Costinot Bartelme Donaldson Rodriguez-Clare, 24; Ding Matray Mueller Xu, 24

ightarrow Provides framework for discussing ECAs as a tool of industrial policy

Outline

EXIM Institutional Setting & Data

1. The Effect of EXIM's Shutdown on Real Activity

2. EXIM's Shutdown and Capital Misallocation

3. EXIM and the Broader Economy

Conclusion

Outline

EXIM Institutional Setting & Data

- 1. The Effect of EXIM's Shutdown on Real Activity
- EXIM's Shutdown and Capital Misallocation
- EXIM and the Broader Economy

Conclusion

Mandate:

"To support jobs in the United States by facilitating the export of U.S. goods and services [...] when private sector lenders are <u>unable or unwilling</u> to provide financing."

Mandate:

"To support jobs in the United States by facilitating the export of U.S. goods and services [...] when private sector lenders are unable or unwilling to provide financing."

Justification

- Information and contractual frictions large in cross-border transactions (e.g., Schmidt-Eisenlohr 2013; Antras and Foley 2015)
- Potentially private bank market power (concentration + extreme specialization) in trade finance (e.g., Niepmann and Schmidt-Eisenlohr, 2017; Paravisini, Rappoport and Schnabl, 2023)

→ Underprovision by private sector

Mandate:

"To support jobs in the United States by facilitating the export of U.S. goods and services [...] when private sector lenders are unable or unwilling to provide financing."

EXIM's tools: menu of financial instruments

[Details]

- Financing and insurance is attached to a specific export transaction
- Example: Working capital loan approved on 12/13/2006
 - Exporter: "Lindsey Manufacturing Co"
 - Amount: \$1.8 M
 - Product: "Power, Distribution, and Specialty Transformer Manufacturing (NAICS=335311)"

Mandate:

"To support jobs in the United States by facilitating the export of U.S. goods and services [...] when private sector lenders are <u>unable or unwilling</u> to provide financing."

EXIM's tools: menu of financial instruments

[Details]

- Financing and insurance is attached to a specific export transaction

Mandate:

"To support jobs in the United States by facilitating the export of U.S. goods and services [...] when private sector lenders are unable or unwilling to provide financing."

EXIM's tools: menu of financial instruments

[Details]

- Financing and insurance is attached to a specific export transaction

EXIM's differences: US government agency debt

- Coverage: more comprehensive
- Information: statutory interagency cooperation with Departments of State, Treasury, Commerce

Mandate:

"To support jobs in the United States by facilitating the export of U.S. goods and services [...] when private sector lenders are unable or unwilling to provide financing."

Operational constraints:

- Maximum default rate of 2%, set by Congress
- Institution must be "subsidy neutral" (WTO, OECD, US Federal Credit Reform Act)
 - Fees & interest collected must offset: cost of borrowing from US Treasury + defaults + operational expenses

Mandate:

"To support jobs in the United States by facilitating the export of U.S. goods and services [...] when private sector lenders are <u>unable or unwilling</u> to provide financing."

EXIM targets firms that are liquidity constrained but solvent

Operational constraints:

- Maximum default rate of 2%, set by Congress

Data

- EXIM dependence: EXIM loan registry
 - Loan level data: 2007-2022
 - Matched on export product and firm name
- Aggregate trade flows: BACI
 - Bilateral: country \times product \times year (2010–2019)
 - Exporters: study USA + other similar developed countries
- Firm outcomes: Compustat
 - Panel: 2010-2019
- Firm exports: Datamyne
 - Universe of maritime exports at the firm \times product \times destination level

Outline

EXIM Institutional Setting & Data

 The Effect of EXIM's Shutdown on Real Activity US product level exports

Firm level outcomes

2. EXIM's Shutdown and Capital Misallocation Evidence on change in misallocation Channels: Unpacking τ wedges

3. EXIM and the Broader Economy

Conclusion

Export growth at time *t* relative to 2014:

$$\frac{\textit{X}_{\textit{p,o,d,t}} - \textit{X}_{\textit{p,o,d,2014}}}{\textit{X}_{\textit{p,o,d,2014}}} = \beta \; \text{EXIM}_{\textit{p,o}} \times \text{Post}_{t \geq 2015} + \gamma_{\textit{p,d,t}} + \delta_{\textit{o,t}} + \varepsilon_{\textit{p,o,d,t}}$$

 $-X_{p,o,d,t}$

: Products (HS-6) \times Origin \times Destinations

Export growth at time *t* relative to 2014:

$$\frac{\textit{\textbf{X}}_{\textit{p,o,d,t}} - \textit{\textbf{X}}_{\textit{p,o,d,2014}}}{\textit{\textbf{X}}_{\textit{p,o,d,2014}}} = \pmb{\beta} \; \mathsf{EXIM}_{\textit{p,o}} \times \mathsf{Post}_{t \geq 2015} + \gamma_{\textit{p,d,t}} + \delta_{\textit{o,t}} + \varepsilon_{\textit{p,o,d,t}}$$

- $X_{p,o,d,t}$: Products (HS-6) \times Origin \times Destinations

- Δ Origin \times Product \times Destination : Remove level differences ($\alpha_{p,o,d}$ fixed-effects)

Export growth at time *t* relative to 2014:

$$\frac{\textit{X}_{\textit{p,o,d,t}} - \textit{X}_{\textit{p,o,d,2014}}}{\textit{X}_{\textit{p,o,d,2014}}} = \beta \; \mathsf{EXIM}_{\textit{p,o}} \times \mathsf{Post}_{t \geq 2015} + \gamma_{\textit{p,d,t}} + \delta_{\textit{o,t}} + \varepsilon_{\textit{p,o,d,t}}$$

- $X_{p,o,d,t}$: Products (HS-6) \times Origin \times Destinations
- Δ Origin \times Product \times Destination : Remove level differences ($\alpha_{p,o,d}$ fixed-effects)
- $EXIM_{\rho,o}$: % $EXIM = $EXIM_{\rho,o,07-10} / $X_{\rho,o,07-10}$

Export growth at time *t* relative to 2014:

$$\frac{\textit{X}_{\textit{p,o,d,t}} - \textit{X}_{\textit{p,o,d,2014}}}{\textit{X}_{\textit{p,o,d,2014}}} = \beta \; \text{EXIM}_{\textit{p,o}} \times \text{Post}_{t \geq 2015} + \gamma_{\textit{p,d,t}} + \delta_{\textit{o,t}} + \varepsilon_{\textit{p,o,d,t}}$$

- $-X_{p,o,d,t}$
- ∆ Origin×Product×Destination
- EXIM_{p,o}
- Post_{*t*≥2015}

: Products (HS-6) \times Origin \times Destinations

: Remove level differences ($\alpha_{p,o,d}$ fixed-effects)

: % EXIM = $\$EXIM_{p,o,07-10} / \$X_{p,o,07-10}$

: Year \geq 2015

Export growth at time *t* relative to 2014:

$$\frac{\textit{X}_{\textit{p,o,d,t}} - \textit{X}_{\textit{p,o,d,2014}}}{\textit{X}_{\textit{p,o,d,2014}}} = \beta \; \mathsf{EXIM}_{\textit{p,o}} \times \mathsf{Post}_{t \geq 2015} + \gamma_{\textit{p,d,t}} + \delta_{\textit{o,t}} + \varepsilon_{\textit{p,o,d,t}}$$

 $-X_{p,o,d,t}$

– ∆ Origin×Product×Destination

- $\mathsf{EXIM}_{p,o}$

- Post_{*t*≥2015}

: Products (HS-6) \times Origin \times Destinations

: Remove level differences ($\alpha_{p,q,d}$ fixed-effects)

: % EXIM = $\$EXIM_{p,o,07-10}$ / $\$X_{p,o,07-10}$

: Year \geq 2015

Export growth at time *t* relative to 2014:

$$\frac{\textit{X}_{\textit{p,o,d,t}} - \textit{X}_{\textit{p,o,d,2014}}}{\textit{X}_{\textit{p,o,d,2014}}} = \pmb{\beta} \; \mathsf{EXIM}_{\textit{p,o}} \times \mathsf{Post}_{t \geq 2015} + \gamma_{\textit{p,d,t}} + \delta_{\textit{o,t}} + \varepsilon_{\textit{p,o,d,t}}$$

$$-X_{p,o,d,t}$$

– ∆ Origin×Product×Destination

- EXIM_{p,o}

- Post $_{t≥2015}$

Product × Destination × Year

: Products (HS-6) \times Origin \times Destinations

: Remove level differences ($\alpha_{p,o,d}$ fixed-effects)

: % EXIM = $\$EXIM_{p,o,07-10} / \$X_{p,o,07-10}$

: Year \geq 2015

: Product and export market shocks

Export growth at time *t* relative to 2014:

$$\frac{\textit{X}_{\textit{p,o,d,t}} - \textit{X}_{\textit{p,o,d,2014}}}{\textit{X}_{\textit{p,o,d,2014}}} = \beta \; \mathsf{EXIM}_{\textit{p,o}} \times \mathsf{Post}_{t \geq 2015} + \gamma_{\textit{p,d,t}} + \delta_{\textit{o,t}} + \varepsilon_{\textit{p,o,d,t}}$$

$$-X_{p,o,d,t}$$

∆ Origin×Product×Destination

- EXIM_{p,o}

- Post $_{t≥2015}$

- $Product \times Destination \times Year$

- Origin×Year

: Products (HS-6) \times Origin \times Destinations

: Remove level differences ($\alpha_{p,o,d}$ fixed-effects)

: % EXIM = $\$EXIM_{p,o,07-10} / \$X_{p,o,07-10}$

: Year \geq 2015

: Product and export market shocks

: Origin market shocks

Export growth at time *t* relative to 2014:

$$\frac{\textit{X}_{\textit{p,o,d,t}} - \textit{X}_{\textit{p,o,d,2014}}}{\textit{X}_{\textit{p,o,d,2014}}} = \beta \; \text{EXIM}_{\textit{p,o}} \times \text{Post}_{t \geq 2015} + \gamma_{\textit{p,d,t}} + \delta_{\textit{o,t}} + \varepsilon_{\textit{p,o,d,t}}$$

- $X_{p,o,d,t}$: Products (HS-6) \times Origin \times Destinations

- Δ Origin \times Product \times Destination : Remove level differences ($\alpha_{p,o,d}$ fixed-effects)

- $EXIM_{p,o}$: % $EXIM = $EXIM_{p,o,07-10} / $X_{p,o,07-10}$

- Post $_{t \geq 2015}$: Year ≥ 2015

Product × Destination × Year : Product and export market shocks

- Origin×Year : Origin market shocks

eta is the effect on exports net of business stealing among US firms

Export growth at time *t* relative to 2014:

$$\frac{\textit{X}_{\textit{p,o,d,t}} - \textit{X}_{\textit{p,o,d,2014}}}{\textit{X}_{\textit{p,o,d,2014}}} = \boldsymbol{\beta} \, \text{EXIM}_{\textit{p,o}} \times \text{Post}_{t \geq 2015} + \gamma_{\textit{p,d,t}} + \delta_{\textit{o,t}} + \varepsilon_{\textit{p,o,d,t}}$$

Challenge with studying bilateral product-level trade flows: Entry & Exit

- 25% "zeros" in $X_{p,o,d,t}$ over 10 years
 - Standard approach: ad-hoc transformations (log(x+1), asinh) or non-linear estimators (Poisson)

Effect of EXIM on product-level exports: 2010–2019

Export growth at time *t* relative to 2014:

$$\frac{X_{p,o,d,t} - X_{p,o,d,2014}}{[X_{p,o,d,t} + X_{p,o,d,2014}] \times 0.5} = \beta \, \text{EXIM}_{p,o} \times \text{Post}_{t \geq 2015} + \gamma_{p,d,t} + \delta_{o,t} + \varepsilon_{p,o,d,t}$$

Challenge with studying bilateral product-level trade flows: Entry & Exit

- 25% "zeros" in $X_{p,o,d,t}$ over 10 years
 - Standard approach: ad-hoc transformations (log(x+1), asinh) or non-linear estimators (Poisson)
- ⇒ Beaumont Matray Xu (2024) midpoint growth rate methodology: estimates <u>aggregate effect</u> & decomposes margins of adjustment [Details]

Identifying assumption

Parallel trends: outcomes between treated (EXIM $_{\rho,o} > 0$) and control (EXIM $_{\rho,o} = 0$) groups would have evolved similarly absent the shutdown, after controls

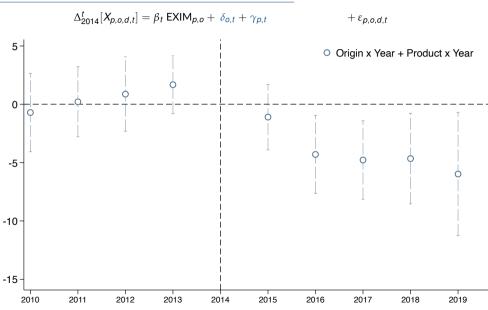
- Treatment defined at product x origin level ightarrow not assuming all products would have evolved similarly

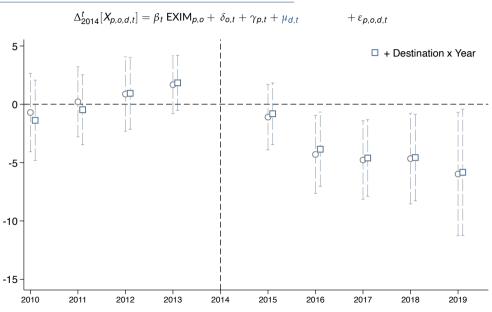
Does not require...

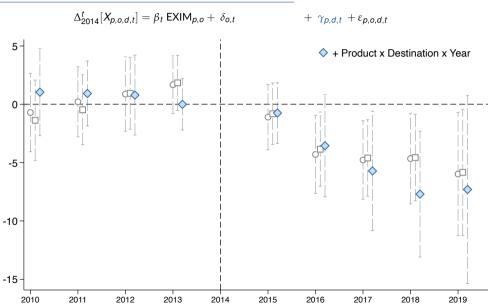
- Random selection of treated vs control
- Random timing of shutdown
- Product dynamics (p, t) or demand shocks (d, t) uncorrelated with treatment: absorbed by $\gamma_{p,d,t}$

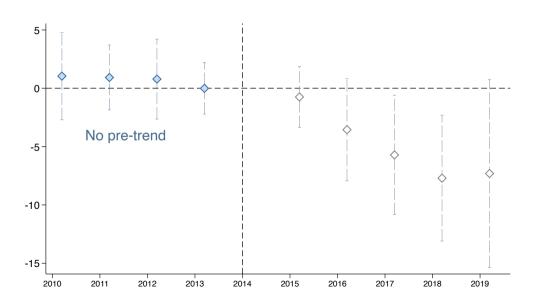
Identifying assumption

Parallel trends: outcomes between treated (EXIM $_{p,o} > 0$) and control (EXIM $_{p,o} = 0$) groups would have evolved similarly absent the shutdown, after controls

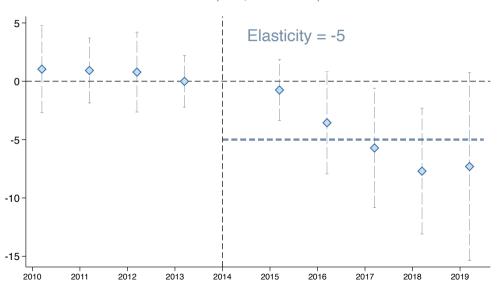

- Treatment defined at product x origin level ightarrow not assuming all products would have evolved similarly


Does not require...


- Random selection of treated vs control
- Random timing of shutdown
- Product dynamics (p, t) or demand shocks (d, t) uncorrelated with treatment: absorbed by $\gamma_{p,d,t}$


Threats to identification: US product shocks coinciding with EXIM product support post 2015

- Firm level evidence: relaxes this assumption & yields similar results



Elasticity of response: $\beta_{post} \approx$ (-4, -5)

- \$1 less of EXIM financing lowers exports by \$4-\$5 [Table]
- ⇒ EXIM creates net trade

Elasticity of response: $\beta_{post} \approx$ (-4, -5)

- \$1 less of EXIM financing lowers exports by \$4-\$5 [Table]
- ⇒ EXIM creates net trade

Working capital multiplier: working cap \approx (20 – 25%) of exports revenues

-\$1 financing \Rightarrow (-\$4, -\$5) export revenues [Working cap = 20%×Y \Rightarrow Δ Y = $\underbrace{5}_{=(1/0.2)}$ × Δ Working cap]

Elasticity of response: $\beta_{post} \approx$ (-4, -5)

- \$1 less of EXIM financing lowers exports by \$4-\$5 [Table]
- ⇒ EXIM creates net trade

Working capital multiplier: working cap \approx (20 – 25%) of exports revenues

-\$1 financing
$$\Rightarrow$$
 (-\$4, -\$5) export revenues [Working cap = 20%×Y \Rightarrow Δ Y = $\underbrace{5}_{=(1/0.2)}$ × Δ Working cap]

Separately estimate firm level response (bilateral-product maritime exports): $\beta_{post}^{firm} \approx$ -4.6 [Table]

⇒ Business stealing likely limited

Elasticity of response: $\beta_{post} \approx$ (-4, -5)

- \$1 less of EXIM financing lowers exports by \$4-\$5 [Table]
- ⇒ EXIM creates net trade

Working capital multiplier: working cap \approx (20 – 25%) of exports revenues

-\$1 financing
$$\Rightarrow$$
 (-\$4, -\$5) export revenues [Working cap = 20%×Y \Rightarrow Δ Y = $\underbrace{5}_{=(1/0.2)}$ × Δ Working cap]

Separately estimate firm level response (bilateral-product maritime exports): $\beta_{post}^{firm} \approx$ -4.6 [Table]

⇒ Business stealing likely limited

Consequences for firm Y, K, L?

Outline

EXIM Institutional Setting & Data

1. The Effect of EXIM's Shutdown on Real Activity

US product level exports

Firm level outcomes

2. EXIM's Shutdown and Capital Misallocation Evidence on change in misallocation Channels: Unpacking τ wedges

3. EXIM and the Broader Economy

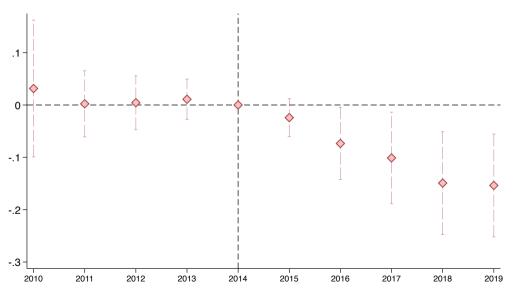
Conclusion

Firm-level specification: 2010–2019

Growth relative to 2014 of various outcomes Y for firm i in industry j at time t

$$\frac{Y_{i,(j,)t} - Y_{i,(j,)2014}}{Y_{i,(j,)2014}} = \beta \text{ EXIM}_i \times Post_{t \geq 2015} + Exporter_{i,t_0} \times \delta_t + \gamma_{j,t} + X_{i,t_0} \times \delta_t + \varepsilon_{i,(j,)t}$$

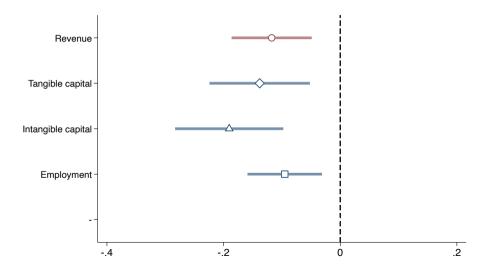
- $EXIM_i$: I[EXIM financing > 0 prior to 2014]
- $\textit{Exporter}_{i,t_0} imes \delta_t : \mathbb{I}[\mathsf{EXIM} \mid \mathsf{foreign\ sales} \mid \mathsf{exports} \mid \mathsf{taxable\ foreign\ income} > \mathsf{0}\]$
- $\gamma_{j,t}$: Industry shocks
- $X_{i,t_0} imes \delta_t$: Additional firm-specific shocks (e.g., propensity to lobby)


Firm-level specification: 2010–2019

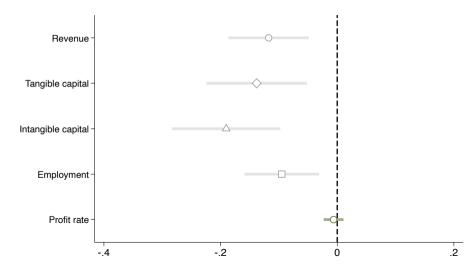
Growth relative to 2014 of various outcomes Y for firm i in industry j at time t

$$\frac{Y_{i,(j,)t} - Y_{i,(j,)2014}}{Y_{i,(j,)2014}} = \beta \text{ EXIM}_i \times Post_{t \geq 2015} + \text{Exporter}_{i,t_0} \times \delta_t + \gamma_{j,t} + X_{i,t_0} \times \delta_t + \varepsilon_{i,(j,)t}$$

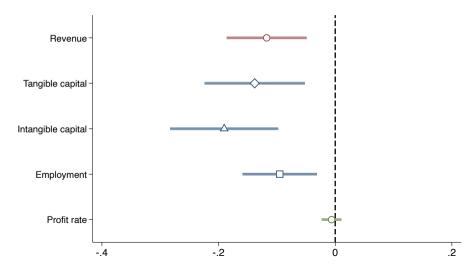
- $EXIM_i$: I[EXIM financing > 0 prior to 2014]
- $\textit{Exporter}_{\textit{i},t_0} imes \delta_t$: $\mathbb{I}[\mathsf{EXIM} \mid \mathsf{foreign\ sales} \mid \mathsf{exports} \mid \mathsf{taxable\ foreign\ income} > \mathsf{0}\]$
- $\gamma_{j,t}$: Industry shocks
- $X_{l,t_0} imes \delta_t$: Additional firm-specific shocks (e.g., propensity to lobby)
 - ---- Compare treated and control with same government connections


Impact on firms' total revenues: Event study with saturated controls

[Controls step-by-step] [Covariate balance]


Summary of firm results

– Y, K, L \approx 11% lower for EXIM-dependent firms


Summary of firm results

- Y, K, L \approx 11% lower
- Profit rate not affected

Summary of firm results

- Y, K, L \approx 11% lower
- Profit rate not affected ⇒ EXIM marginal and not profit windfall [Table] [Event study]

Implications for firm production function

So far: \Downarrow Exports \longrightarrow \Downarrow Revenues

 \triangle Exports $\times \omega_{Exports}$ + \triangle Domestic sales $\times \omega_{Domestic} = \triangle$ Revenues

Implications for firm production function

So far:
$$\Downarrow$$
 Exports \longrightarrow \Downarrow Revenues

$$\triangle$$
 Exports $\times \omega_{Exports}$ + \triangle Domestic sales $\times \omega_{Domestic} = \triangle$ Revenues

Calculate the pass-through of exports to domestic sales:

$$\epsilon_{\it EXIM}^{\it domestic} / \epsilon_{\it EXIM}^{\it exports} pprox [0.03-0.08]$$

Implications for firm production function

So far:
$$\Downarrow$$
 Exports \longrightarrow \Downarrow Revenues

$$\Delta$$
 Exports $\times \omega_{Exports}$ + Δ Domestic sales $\times \omega_{Domestic} = \Delta$ Revenues

Calculate the pass-through of exports to domestic sales:

$$\epsilon_{\it EXIM}^{\it domestic} / \epsilon_{\it EXIM}^{\it exports} \approx [0.03 \text{-} 0.08]$$

Firm production function

 \checkmark > 0: Within-firm economies of scale

e.g., financing frictions + internal capital market

(Stein, 1997; Lamont, 1997)

ex: France and US (Berman, Berthou, Hericourt, 2015; Ding, 2024)

Constant marginal costs (e.g., Melitz, 2003)

★ < 0: Increasing marginal costs (e.g., Almunia, Antras, Lopez-Rodriguez, Morales, 2021)
</p>

Robustness

Aggregate product exports

- Remove products sequentially [Result]
- Different weights [Result]
- Dichotomous treatment I(EXIM $_{p,o} > 0.45\%$): $\beta_{post} \approx -6$ (Callaway and Sant'Anna, 2021) [Result]

Firm outcomes

- Remove industries sequentially [Result]
 - → Remove industries dependent on government contracts
- Excluding Boeing [Result]
 - Removing the 10 largest beneficiaries [Result]
- Quarterly sales: decline starts exactly after shutdown in June [Result]
- Additional firm controls: lobbying, state, fiscal month, size, profitability, leverage [Result]
- Different level of industry [Result]
- Midpoint growth rate and other winsorizing [Result]
- Estimating EXIM's programs separately [Result]

Outline

EXIM Institutional Setting & Data

 The Effect of EXIM's Shutdown on Real Activity US product level exports Firm level outcomes

2. EXIM's Shutdown and Capital Misallocation Evidence on change in misallocation

Channels: Unpacking au wedges

3. EXIM and the Broader Economy

Conclusion

EXIM is marginal for the average firm

Empirical results: $\Downarrow K + \not \Delta$ Profit rate

Consistent with firm profit function where EXIM marginal

$$\Pi_i = f_i(K_i) - r_i \times (1 - EXIM_i) \times K_i$$

- FOC wrt K_i

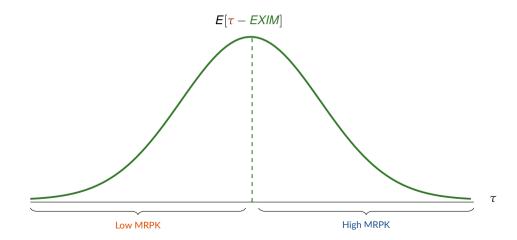
$$\underbrace{MRPK_{j}}_{\text{Marginal revenue return to capital}} = \underbrace{r_{j} \times (1 - EXIM_{j})}_{\text{EXIM in marginal cost}}$$

EXIM is marginal for the average firm

Empirical results: ↓ K + △ Profit rate

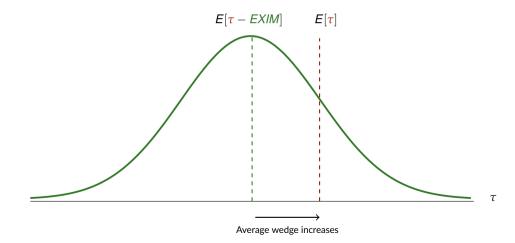
Consistent with firm profit function where EXIM marginal + possible input cost wedge τ_i

$$\Pi_i = f_i(K_i) - r_i \times (1 - EXIM_i + \tau_i) \times K_i$$


- FOC wrt K_i

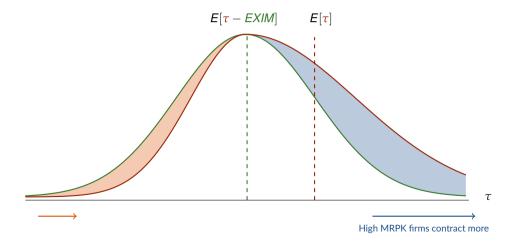
$$\underbrace{MRPK_{j}}_{\text{Marginal revenue return to capital}} = \underbrace{r_{j} \times (1 - EXIM_{j} + \tau_{j})}_{\text{EXIM in marginal cost}}$$

Effect on Δ misallocation? \rightarrow Heterogeneous τ_i (e.g., Hsieh Klenow 09; Moll, 14; Baqaee Farhi 20; Bau Matray 23)


Capital misallocation in industry J

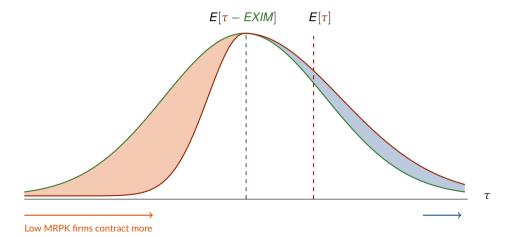
$$\forall i \in J$$
, $MRPK_i = r_i \times (1 + \tau_i - EXIM_i)$

↑ Average wedge in industry *J* during EXIM's shutdown


$$\forall i \in J$$
, $MRPK_i = r_i \times (1 + \tau_i - EXHI_i)$

Δ Misallocation in industry J during EXIM's shutdown?

$$\forall i \in J$$
, $MRPK_i = r_i \times (1 + \tau_i - FXHI_i)$


Case 1: Average K decreases, Misallocation increases

Δ Misallocation in industry J during EXIM's shutdown?

$$\forall i \in J$$
, $MRPK_i = r_i \times (1 + \tau_i - FXHI_i)$

Case 2: Average K decreases, Misallocation decreases

Distributional effect of the shock:

$$\begin{split} \Delta \textit{K}_{\textit{i},(\textit{j},)t} &= \beta_{1} \; \text{EXIM}_{\textit{i}} \times \textit{Post}_{t \geq 2015} \times \textit{I}_{\textit{i}}^{\textit{High} \, \text{MRPK}_{\textit{i} \in \textit{j}}} \\ &+ \beta_{2} \; \text{EXIM}_{\textit{i}} \times \delta_{t} + \textit{I}_{\textit{i}}^{\textit{High} \, \text{MRPK}_{\textit{i} \in \textit{j}}} \otimes \left[\gamma_{\textit{j},t} + \text{Exporter}_{\textit{i},t_{0}} \times \delta_{t} + \textit{X}_{\textit{i},t_{0}} \times \delta_{t} \right] + \varepsilon_{\textit{i},(\textit{j},)t} \end{split}$$

High $MRPK_{i \in j}$: Firm's average MRPK in 2010–2013 > median in cell j (e.g., 4-digit industry)

 $I_i^{High\,\mathsf{MRPK}_{i\in j}}\otimes\left[X_{i,t_0} imes\delta_t
ight]$: Control for shocks specifics to high MRPK firms

 β_1 : Triple difference estimate = Δ misallocation

 \rightarrow (High - low) in treated vs control. Not high vs low.

 $\Delta K_{i,i,t}$: Within-firm changes \Rightarrow remove cross-sectional differences

Distributional effect of the shock:

$$\begin{split} \Delta \textit{K}_{\textit{i},(j,)t} &= \beta_{1} \; \text{EXIM}_{\textit{i}} \times \textit{Post}_{t \geq 2015} \times \textit{I}_{\textit{i}}^{\textit{High} \, \text{MRPK}_{\textit{i} \in \textit{j}}} \\ &+ \beta_{2} \; \text{EXIM}_{\textit{i}} \times \delta_{t} + \textit{I}_{\textit{i}}^{\textit{High} \, \text{MRPK}_{\textit{i} \in \textit{j}}} \otimes \left[\gamma_{\textit{j},t} + \text{Exporter}_{\textit{i},t_{0}} \times \delta_{t} + \textit{X}_{\textit{i},t_{0}} \times \delta_{t} \right] + \varepsilon_{\textit{i},(j,)t} \end{split}$$

Sufficient to recover Δ "allocative efficiency" in first order approximation effect of shock on TFP (Petrin Levinsohn 2012; Bagaee Farhi 2019; Bau Matray 2023)

$$\triangle$$
 Allocative efficiency $_{J,t} \approx \sum_{i \in J} \frac{\tau_i}{1 + \tau_i} \Delta K_i$

Distributional effect of the shock:

$$\begin{split} \Delta \textit{K}_{\textit{i},(\textit{j},)t} &= \beta_{1} \; \text{EXIM}_{\textit{i}} \times \textit{Post}_{t \geq 2015} \times \textit{I}_{\textit{i}}^{\textit{High} \, \text{MRPK}_{\textit{i} \in \textit{j}}} \\ &+ \beta_{2} \; \text{EXIM}_{\textit{i}} \times \delta_{t} + \textit{I}_{\textit{i}}^{\textit{High} \, \text{MRPK}_{\textit{i} \in \textit{j}}} \otimes \left[\gamma_{\textit{j},t} + \text{Exporter}_{\textit{i},t_{0}} \times \delta_{t} + \textit{X}_{\textit{i},t_{0}} \times \delta_{t} \right] + \varepsilon_{\textit{i},(\textit{j},)t} \end{split}$$

This empirical approach deals with standard problems in estimating Δ misallocation

- 1. Cross-sectional differences do not recover τ
 - → Use within-firm changes

Distributional effect of the shock:

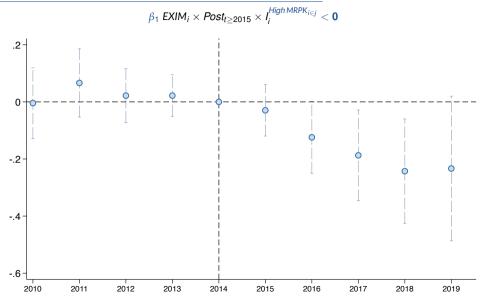
$$\begin{split} \Delta \textit{K}_{\textit{i},(\textit{j},)t} &= \beta_{1} \; \text{EXIM}_{\textit{i}} \times \textit{Post}_{t \geq 2015} \times \textit{I}_{\textit{i}}^{\textit{High} \, \text{MRPK}_{\textit{i} \in \textit{j}}} \\ &+ \beta_{2} \; \text{EXIM}_{\textit{i}} \times \delta_{t} + \textit{I}_{\textit{i}}^{\textit{High} \, \text{MRPK}_{\textit{i} \in \textit{j}}} \otimes \left[\gamma_{\textit{j},t} + \text{Exporter}_{\textit{i},t_{0}} \times \delta_{t} + \textit{X}_{\textit{i},t_{0}} \times \delta_{t} \right] + \varepsilon_{\textit{i},(\textit{j},)t} \end{split}$$

This empirical approach deals with standard problems in estimating Δ misallocation

- 1. Cross-sectional differences do not recover τ
 - → Use within-firm changes
- 2. Δ Var[MRPK] = Δ misallocation only under strong assumptions such as: TFPQ & TFPR jointly log-normal
 - \longrightarrow Does not require those assumptions

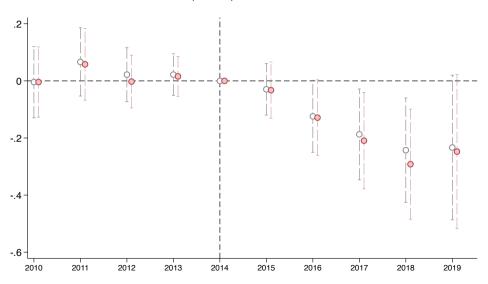
Distributional effect of the shock:

$$\begin{split} \Delta \textit{K}_{\textit{i},(\textit{j},)t} &= \beta_{1} \; \text{EXIM}_{\textit{i}} \times \textit{Post}_{t \geq 2015} \times \textit{I}_{\textit{i}}^{\textit{High} \, \text{MRPK}_{\textit{i} \in \textit{j}}} \\ &+ \beta_{2} \; \text{EXIM}_{\textit{i}} \times \delta_{t} + \textit{I}_{\textit{i}}^{\textit{High} \, \text{MRPK}_{\textit{i} \in \textit{j}}} \otimes \left[\gamma_{\textit{j},t} + \text{Exporter}_{\textit{i},t_{0}} \times \delta_{t} + \textit{X}_{\textit{i},t_{0}} \times \delta_{t} \right] + \varepsilon_{\textit{i},(\textit{j},)t} \end{split}$$

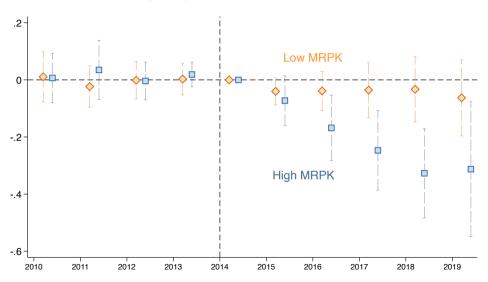

Measuring MRPK:

$$Revenue_{ijt} = TFPR_{it}K_{ijt}^{\alpha_{i}}$$

$$MRPK = \alpha_{j} \frac{Revenue_{ijt}}{K_{ijt}}$$


$$MRPK \propto \frac{Revenue_{ijt}}{K_{iit}} \quad \text{within industry or industry} \times \text{size (j) bin}$$

Removing EXIM ↑ Misallocation within listed firms


Removing EXIM ↑ Misallocation within listed firms

Similar effects if we sort MRPK within Industry × Size quartile

Removing EXIM Misallocation within listed firms

High MRPK react, not low MRPK ⇒ joint log-normality not preserved

During EXIM's shutdown:

- Average firm contracts
- Driven by high MRPK

EXIM finances NPV> 0 projects

During EXIM's shutdown:

- Average firm contracts
- Driven by high MRPK

EXIM finances NPV> 0 projects

⇒ Are banks leaving money on the table?

During EXIM's shutdown:

- Average firm contracts
- Driven by high MRPK

EXIM finances NPV> 0 projects because firms face $\tau>0$

⇒ Are banks leaving money on the table? Not necessarily.

During EXIM's shutdown:

- Average firm contracts
- Driven by high MRPK

EXIM finances NPV> 0 projects because firms face $\tau > 0$

- \Rightarrow Are banks leaving money on the table? Not necessarily.
 - Firms facing $\tau > 0$: endogenous outcome of private banks maximizing expected profits
 - Incentive compatibility constraint with imperfect contracts
 - High markup due to higher concentration in trade financing (Niepmann Schmidt-Eisenlohr 2017)
 - Lack of financing without EXIM therefore reflects structure of the market and initial value of τ

During EXIM's shutdown:

- Average firm contracts
- Driven by high MRPK

EXIM finances NPV> 0 projects because firms face $\tau >$ 0

 \Rightarrow Are banks leaving money on the table? Not necessarily.

What are these constraints τ ?

Outline

EXIM Institutional Setting & Data

 The Effect of EXIM's Shutdown on Real Activity US product level exports Firm level outcomes

2. EXIM's Shutdown and Capital Misallocation

Evidence on change in misallocation

Channels: Unpacking τ wedges

EXIM and the Broader Economy

Conclusion

Sources of $\tau_{i,m}$ in trade financing

For firm *i* selling to market *m*:

Model

$$MRPK_{i,m} = r_{i,m}^{adj} \times (1 + \tau_{i,m} - EXIM_{i,m})$$

as:

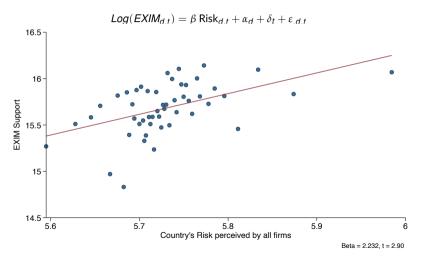
$$MRPK_{i,m} = r_{i,m}^{adj} \times (1 + \lambda_i + \eta_m - EXIM_{i,m})$$

- 1. λ_i : Firm borrowing constraint
 - Theoretically: Incomplete contracts / information asymmetry (Stiglitz Weiss 1981; Banerjee Newman 1993)
- 2. η_m : Export market constraint
 - Theoretically: High cross-border contractual frictions with foreign countries (Schmidt-Eisenlohr 2013; Antras Foley 2015)

[1/2] Empirical evidence of sources of $\tau_{i,m}$: λ_i

EXIM's shutdown has larger effects for ex-ante more financially constrained (λ_i) firms

Dependent variable Financing frictions proxy:	Investment						
	Leverage	Dividends intensity	Hoberg and Maskimovic (2015)	Coverage ratio			
	(1)	(2)	(3)	(4)			
$\textit{EXIM}_i \times Post_t \times \textit{I}_i^{Constrained}$	-0.16***	-0.11***	-0.12***	-0.075**			
	(0.044)	(0.039)	(0.047)	(0.039)			
Fixed Effects (interacted)							
Exporter \times Year	\checkmark	\checkmark	✓	\checkmark			
$Industry \times Year$	\checkmark	\checkmark	\checkmark	\checkmark			
Observations	23,985	23,942	22,285	24,626			


[2/2] Empirical evidence of sources of $\tau_{i,m}$: η_m

EXIM's shutdown has <u>larger effects</u> for destinations with higher trade frictions (η_m)

Dependent variable	Export						
Market frictions proxy:	Risk perception			Rule of	Financial		
	Any (1)	Financial (2)	Foreign (3)	law(4)	development (5)		
						$EXIM_{p,o} \times Post_l \times I_d^{Constrained}$	-2.08**
	(0.98)	(1.22)	(1.08)	(0.99)	(0.99)		
Fixed Effects							
Product (6-digit) \times Destination \times Year	\checkmark	✓	\checkmark	✓	\checkmark		
Origin \times Year \times I $_d^{Constrained}$	\checkmark	✓	\checkmark	✓	\checkmark		
$EXIM_{p,o} \times Post_t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Observations	1,661,218	1,661,218	1,661,218	3,341,610	3,255,834		

[2/2] Empirical evidence of sources of $\tau_{i,m}$: η_m

Prior to shutdown, EXIM <u>actively targeted</u> destinations with higher trade frictions (η_m)

Outline

EXIM Institutional Setting & Data

- 1. The Effect of EXIM's Shutdown on Real Activity
- 2. EXIM's Shutdown and Capital Misallocation
- 3. EXIM and the Broader Economy

Conclusion

So far: EXIM's shutdown ↓ average output and ↑ within-industry misallocation

<u>Total</u> effect will depend on how EXIM interacts with the rest of the economy

So far: EXIM's shutdown ↓ average output and ↑ within-industry misallocation

Total effect will depend on how EXIM interacts with the rest of the economy

- 1. Is EXIM self-financing? → Distortive taxes needed?
- 2. Does EXIM crowd out private banks?
- 3. How do ECA interventions relate to broader industrial policy goals?

So far: EXIM's shutdown ↓ average output and ↑ within-industry misallocation

Total effect will depend on how EXIM interacts with the rest of the economy

- 1. Is EXIM self-financing? → Distortive taxes needed?
- 2. Does EXIM crowd out private banks?
- 3. How do ECA interventions relate to broader industrial policy goals?

From EXIM's income statements:

- Revenues cover costs: returned ≈ \$0.5B annually
- ⇒ Operates within institutional profitability constraints from US federal law and international organizations

From EXIM's income statements:

- Revenues cover costs: returned \approx \$0.5B annually
- ⇒ Operates within institutional profitability constraints from US federal law and international organizations

Channels

- EXIM has lower cost
 - Theoretically : better cross-border loss recovery technology (e.g., other govt agencies, Paris Club)
 - **Empirically** : maintain low default rate and high recovery rate

From EXIM's income statements:

- Revenues cover costs: returned \approx \$0.5B annually
- ⇒ Operates within institutional profitability constraints from US federal law and international organizations

Channels

- FXIM has lower cost
 - Theoretically : better cross-border loss recovery technology (e.g., other govt agencies, Paris Club)
 - Empirically : maintain low default rate and high recovery rate
- EXIM sets lower markups
 - Theoretically : extra term in ECA's objective function = α Profits + (1α) Exports (Fonseca Matray 2024)

From EXIM's income statements:

- Revenues cover costs: returned \approx \$0.5B annually
- ⇒ Operates within institutional profitability constraints from US federal law and international organizations

Channels

- EXIM has lower cost
 - Theoretically : better cross-border loss recovery technology (e.g., other govt agencies, Paris Club)
 - Empirically : maintain low default rate and high recovery rate
- EXIM sets lower markups
 - Theoretically : extra term in ECA's objective function = α Profits + $(1-\alpha)$ Exports (Fonseca Matray 2024)
- ⇒ No need to levy distortive taxes

So far: EXIM's shutdown ↓ average output and ↑ within-industry misallocation

Total effect will depend on how EXIM interacts with the rest of the economy

✓ Is EXIM self-financing? → Distortive taxes needed?

2. Does EXIM crowd out private banks?

3. How do ECA interventions relate to broader industrial policy goals?

Does EXIM crowd out private banks?

EXIM and private banks operate in segmented markets

EXIM has limited ability to expand

Does EXIM crowd out private banks?

EXIM and private banks operate in segmented markets

EXIM's mandate: "to support [...] exports [...] when private sector lenders are unable or unwilling"

- Applicants must provide evidence of failure to secure financing
- ⇒ EXIM does not cream-skim by design

EXIM has limited ability to expand

Does EXIM crowd out private banks?

EXIM and private banks operate in segmented markets

EXIM's mandate: "to support [...] exports [...] when private sector lenders are unable or unwilling"

- Applicants must provide evidence of failure to secure financing
- ⇒ EXIM does **not** cream-skim by design

EXIM has limited ability to expand

- Profits cannot be accumulated over time (remitted annually to US Treasury)
- Annual balance sheet size determined by Congressional budgeting process

So far: EXIM's shutdown ↓ average output and ↑ within-industry misallocation

Total effect will depend on how EXIM interacts with the rest of the economy

- \checkmark Is EXIM self-financing? \rightarrow Distortive taxes needed?
- X Does EXIM crowd out private banks?
 - 3. How do ECA interventions relate to broader industrial policy goals?

ECAs and industrial policy

ECA support could be used for classical industrial policy objectives targeting "social" wedges τ_{s}

- Industry (p)
- Market (m)
- Dynamics (t)

Positive correlation between $\tau_{i,m}$ and social wedges $\tau^s \to \mathsf{EXIM}$ targets both objectives

Stay Tuned!

- Spillover effects of EXIM onto other firms? Using US Census data

 Correlation between reducing trade financing wedges and supporting industries with positive externalities?

- Complementarity of EXIM with private banks? Using Federal Reserve Y-14 data

- Long-run role of ECAs in shaping cross-country capital flows & trade patterns
 - ECA funding > sovereign debt funds for many countries

Outline

EXIM Institutional Setting & Data

- The Effect of EXIM's Shutdown on Real Activity
- 2. EXIM's Shutdown and Capital Misallocation
- EXIM and the Broader Economy

Conclusion

Conclusion

US EXIM shutdown had large average and allocative effects in a context with

- Developed financial markets
- Large, publicly listed firms

International trade entails large financing frictions and contractual frictions

- Private markets may have suboptimal provision

⇒ Role for government intervention in trade financing, as provided by ECAs

Thank you!

Questions: amatray@berkeley.edu

Appendix Outline

- Institutional Context

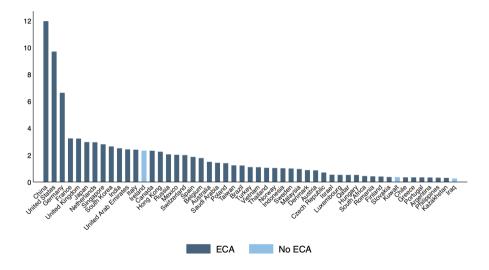
- Distribution of ECAs (1) (2), EXIM Shutdown, EXIM Intensity, EXIM Profitability, EXIM Budget Allocation Process

- Theory

- Theoretical Predictions for ECA Financing
- Beaumont, Matray, Xu (2024) estimator and its Aggregation Properties

Main Figures and Tables

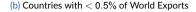
- Aggregate: Reduction in US Exports in Custom Data, Decomposing Margins of Adjustments, Impact on US Exports of Products
- Firm-level: Covariate Balance, Total Revenues: Progressive Controls, Event Study: Other Firm Outcomes, Total Revenues: Alternative Samples, Reduction in Maritime Shipments (Datamyne), Treated Firms Scale Down, Domestic Sale Elasticity, Foreign-Domestic Pass-through Shock

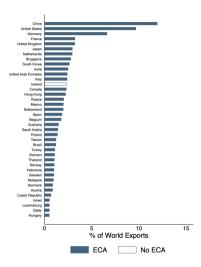

- Empirical Robustness

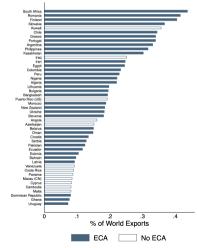
- Aggregate: Dichotomous Treatment, Different Weighting, Distribution of β and t-stat in Custom Data
- Firm-level: Event Study: Quarterly Sales, Other Firm Controls, Separate EXIM Programs, Distribution of β and t-stat for Firms, Different Industry Levels, Winsor and Construction for LHS, Different Winsorizing

- Channels for EXIM's Impact

- Firm Financing Friction (λ_i) Heterogeneity, Destination Country (τ_m) Heterogeneity, Destination Country (τ_m) Risk and EXIM Exposure

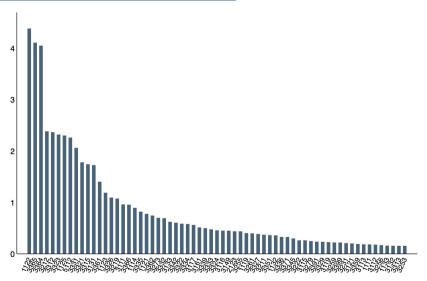

Distribution of ECAs




[Back] [Back to Appendix Outline]

Distribution of ECAs

(a) Countries with $\geq 0.5\%$ of World Exports



[Back]

EXIM Financing Intensity By Industries (%)

[Back] [Back to Appendix Outline]

EXIM Shutdown

- 2015: Full shutdown of EXIM for five months
 - Driven by Tea Party (Paul Ryan) criticizing the bank for "providing corporate welfare"

- 2015 2019: Very limited capacity for four years
 - Republicans blocked nomination of vacant seats ⇒ No board quorum

[Back] [Back to Appendix Outline]

EXIM Tools

Working Capital Guarantee:

"EXIM provides repayment guarantees to lenders on secured, short-term working capital loans ... for a single loan or a revolving line of credit... EXIM generally provides a 90% loan-backing guarantee to the lender."

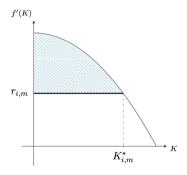
Export Credit Insurance:

"EXIM... [insures U.S. exporters] against the risk of foreign buyer or other foreign debtor default for political or commercial reasons. This risk protection permits exporters to extend credit to their international customers where it would otherwise not be possible. Insurance policies may apply to shipments to one or multiple buyers, insure comprehensive credit risks (including both commercial and political) or only political risks, offer either shortterm or medium-term coverage, and are primarily U.S.- dollar transactions."

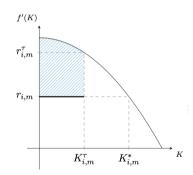
Loan Guarantee:

"EXIM loan guarantees cover the repayment risks on the foreign buyer's debts when purchasing U.S. exports. EXIM guarantees to a commercial lender that, in the event of a payment default by the borrower, it will pay to the lender the outstanding principal and interest on the loan. For medium- and long-term transactions, EXIM generally provides an 85% guarantee, with a 15% down payment from the buyer."

- Direct Loans:

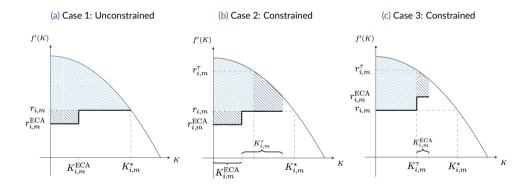

"EXIM offers fixed-rate loans directly to foreign buyers of U.S. goods and services. EXIM extends to a company's foreign customer a fixed-rate loan generally covering up to 85% of the U.S. contract value. The fixed interest rates are determined through the Arrangement on Guidelines for Officially Supported Export Credits (the Arrangement) negotiated among members of the OECD."

- Setup:
 - Entrepreneurs with no initial wealth own production technology f(K) with f'(K) > 0, f''(K) < 0
 - At most $D_{i,m}$ of outside financing can be raised at a flat rate $r_{i,m}$ to invest in capital of the firm.
- Without ECAs, firm maximizes


$$\max_{K_{i,m}} \ \Pi_{i,m} = f(K_{i,m}) - r_{i,m} \times K_{i,m}$$
s.t. $K_{i,m} \le D_{i,m}$

- Define a firm as being <u>constrained</u> if it is only able to raise funding to some level $D_{i,m}^{\tau} <$ its optimal unconstrained level $D_{i,m}^{*} = f'^{-1}(r_{i,m})$
- The shadow price of capital for the constrained firm: $r_{i,m}^{ au}=f_{i,m}'(\mathcal{K}_{i,m}^{ au})$

(a) Unconstrained without ECAs


(b) Constrained without ECAs

With ECA financing, firm maximizes

$$\begin{aligned} \max_{K_{i,m},K_{i,m}^{ECA}} & \Pi_{i,m} = f(K_{i,m} + K_{i,m}^{ECA}) - r_{i,m} \times K_{i,m} - r_{i,m}^{ECA} \times K_{i,m}^{ECA} \\ \text{s.t.} & K_{i,m} \leq D_{i,m} \\ & K_{i,m}^{ECA} \leq D_{i,m}^{ECA} \end{aligned}$$

- 3 possible cases:
 - Case 1: Unconstrained firm optimization
 - Case 2: Constrained firm optimization when $r_{i,m}^{ECA} < r_{i,m}$
 - Case 3: Constrained firm optimization when $r_{i,m} < r_{i,m}^{ECA} < r_{i,m}^{ au}$
- In Cases 2 and 3, ECA financing is not inframarginal!

A New Solution to Handle Entry and Exit in Trade Data

Beaumont, Matray, Xu (2024): Aggregation property of midpoint growth rate

- Methodology:
 - Create balanced panel and fill missing with zeros
 - Define growth rate $\Delta_{pre}^t[X_{p,o,d,t}]$ as:

$$\Delta_{pre}^{t}[X_{p,o,d,t}] = \frac{X_{p,o,d,t} - X_{p,o,d,t=pre}}{(X_{p,o,d,t} + X_{p,o,d,t=pre}) \times 0.5}$$

A New Solution to Handle Entry and Exit in Trade Data

Beaumont, Matray, Xu (2024): Aggregation property of midpoint growth rate

- Methodology:

- Create balanced panel and fill missing with zeros
- Define growth rate $\Delta_{pre}^t[X_{p,o,d,t}]$ as:

$$\Delta_{pre}^{t}[X_{p,o,d,t}] = \frac{X_{p,o,d,t} - X_{p,o,d,t=pre}}{(X_{p,o,d,t} + X_{p,o,d,t=pre}) \times 0.5}$$

Advantages:

- Recovers full elasticity of intensive + extensive margins (≠ estimating separate elasticities)
- 2. Not sensitive to small variations around zero (\neq log transformations)
- 3. Is linear and allows perfect (dis)aggregation with appropriate weights (≠ non-linear count models)

Estimates:

- Aggregate effect: weight by value of cell (denominator) [Details]
- Decompositions: weights = share of the denominator at the higher cell level [Details] Similar to recent

Amiti-Weinstein (2018) estimator, but simpler, linear and naturally bounds extreme growth values_

Level: Origin×HS-4

Dependent variable	Exports					
Level	O×HS-4					
	(1)	(2)	(3)	(4)	(5)	
$EXIM_{p,o} \ge 0.45\% \times Post_t$	-0.065*** (0.020)					
Fixed Effects						
Exporter×Year	✓					
Product (4-digit)×Year	✓					
Product (4-digit)×Importer×Year	_					
Product (6-digit)×Importer×Year	_					
Observations	98,671					

Level: Origin×HS-6

- Define $A_{p,o,d,t} = (X_{p,o,d,t} + X_{p,o,d,t=pre}) imes 0.5$
- Aggregation possible with weights defined as:

$$A_{o,hs6,t}\Big/\Big(\sum_{hs6\in[o,hs4,t]}A_{o,hs6,t}\Big)$$

Dependent variable	Exports					
Level	O×HS-4	O×HS-6				
	(1)	(2)	(3)	(4)	(5)	
$EXIM_{p,o} \ge 0.45\% \times Post_t$	-0.065*** (0.020)	-0.065*** (0.020)				
Fixed Effects						
Exporter×Year	✓	✓				
Product (4-digit)×Year	✓	✓				
Product (4-digit)×Importer×Year	_	_				
Product (6-digit)×Importer×Year	_	_				
Observations	98,671	8,699,645				

Level: Origin×HS-6×Destination

- Define $A_{p,o,d,t}=(X_{p,o,d,t}+X_{p,o,d,t=pre}) imes 0.5$
- Aggregation possible with weights defined as:

$$A_{o,hs6,d,t} / \left(\sum_{hs6,d \in [o,hs4,t]} A_{o,hs6,d,t}\right)$$

Dependent variable	Exports						
Level	O×HS-4	O×HS-4 O×HS-6 O×HS-6×Destin					
	(1)	(2)	(3)	(4)	(5)		
$EXIM_{p,o} \ge 0.45\% \times Post_t$	-0.065*** (0.020)	-0.065*** (0.020)	-0.065*** (0.020)				
Fixed Effects							
Exporter×Year	✓	✓	✓				
Product (4-digit)×Year	✓	✓	✓				
Product (4-digit)×Importer×Year	_	_	_				
Product (6-digit) \times Importer \times Year	_	-	_				
Observations	98,671	8,699,645	25,086,661				

Level: $Origin \times HS-6 \times Destination$

- Define $A_{p,o,d,t} = (X_{p,o,d,t} + X_{p,o,d,t=pre}) \times 0.5$
- Additional fixed effects: cleanly compare the role of unobserved heterogeneity in more aggregate estimates

Dependent variable	Exports							
Level	O×HS-4	O×HS-6	O×HS-6×Destination	O×HS-6×Destination	O×HS-6×Destination			
	(1)	(2)	(3)	(4)	(5)			
$EXIM_{p,o} {\geq} 0.45\% {\times} Post_t$	-0.065*** (0.020)	-0.065*** (0.020)	-0.065*** (0.020)	-0.073*** (0.020)	-0.071*** (0.019)			
Fixed Effects								
Exporter×Year	✓	✓	✓	✓	✓			
Product (4-digit)×Year	✓	✓	✓	_	_			
Product (4-digit)×Importer×Year	_	_	_	✓	_			
Product (6-digit)×Importer×Year	_	-	_	_	✓			
Observations	98,671	8,699,645	25,086,661	25,086,661	25,086,661			

Reduction in US Exports in Custom Data

Dependent variable	Exports						
Level of aggregation	HS-4	HS-6	HS-6×Destination	HS	6-6×Destinatio	n	
	(1)	(2)	(3)	(4)	(5)	(6)	
$EXIM_{p,o} \times Post_t$	-4.40	-4.40	-4.40	-4.16	-5.02		
	(1.57)	(1.57)	(1.57)	(1.64)	(2.40)		
	[0.0052]	[0.0052]	[0.0052]	[0.011]	[0.037]		
$EXIM_{p,o} \ge 0.45\% \times Post_t$						-0.062	
,						(0.020)	
						[0.0017]	
Fixed Effects							
Exporter×Year	✓	✓	✓	✓	✓	✓	
Product (4-digit)×Year	✓	✓	✓	_	_	-	
Product (6-digit)×Year	_	_	_	✓	_	-	
$Product~(6\text{-}digit) \times Importer \times Year$	_	-	-	-	✓	✓	
Observations	109,199	8,419,512	23,775,713	23,775,713	23,775,713	23,775,713	

Decomposing Margins of Adjustments

$$\mathsf{Decompose}\ \Delta \textit{X}_{\textit{p},\textit{o}} = \Delta \textit{Intensive}_{\textit{p},\textit{o},\textit{d}} + \Delta \textit{Entry}_{\textit{p},\textit{o},\textit{d}} + \Delta \textit{Exit}_{\textit{p},\textit{o},\textit{d}}$$

- Overall effect: Treatment variation at Origin×HS-4
- Decomposition of Entry / Exit across destinations

Dependent variable	Exports			
Margin	All			
	(1)			
$EXIM_{p,o} \ge 0.45\% \times Post_t$	-0.052			
	(0.018)			
	[0.0038]			

Decomposing Margins of Adjustments

Decompose
$$\Delta X_{p,o} = \Delta Intensive_{p,o,d} + \Delta Entry_{p,o,d} + \Delta Exit_{p,o,d}$$

- Intensive margin explains 80%

Dependent variable	Exports			
Margin	All	Intensive		
	(1)	(2)		
$EXIM_{p,o} \ge 0.45\% \times Post_t$	-0.052 (0.018) [0.0038]	-0.042 (0.017) [0.012]		

Decomposing Margins of Adjustments

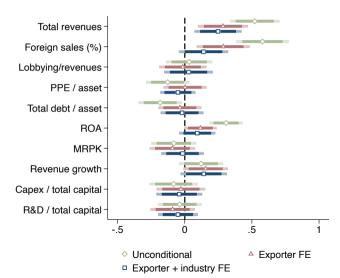
$$\mathsf{Decompose}\ \Delta \textit{X}_{\textit{p},\textit{o}} = \Delta \textit{Intensive}_{\textit{p},\textit{o},\textit{d}} + \Delta \textit{Entry}_{\textit{p},\textit{o},\textit{d}} + \Delta \textit{Exit}_{\textit{p},\textit{o},\textit{d}}$$

Intensive margin explains 80%
 Extensive margin: ↓ entry, No Δ exit
 Finance matters for variable
 + sunk costs of trade (e.g., Xu, 2022)

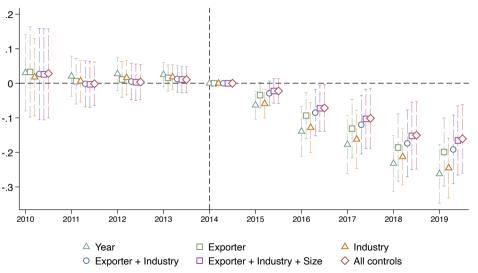
Dependent variable	Exports					
Margin	All	Intensive	Exit	Entry		
	(1)	(2)	(3)	(4)		
$EXIM_{p,o} \ge 0.45\% \times Post_t$	-0.052 (0.018) [0.0038]	-0.042 (0.017) [0.012]	-0.00039 (0.0037) [0.91]	-0.0099 (0.0055) [0.072]		

[Back to Appendix Outline] [Back]

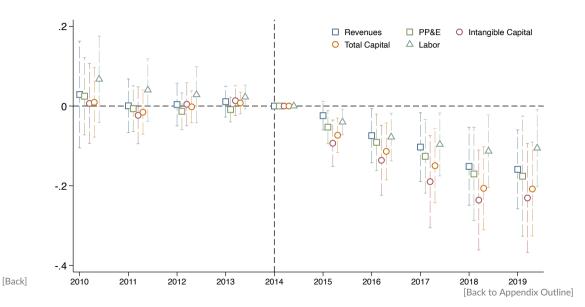
EXIM's Exposure: Continuous vs. Dichotomous

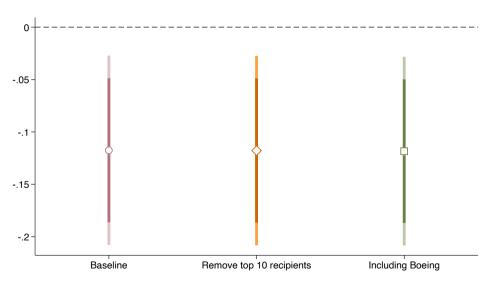

Dependent variable	Δ Exports					
	(1)	(2)	(3)			
$EXIM_{p,o} \times Post_t$	-4.40	-5.02				
	(1.57)	(2.40)				
	[0.0052]	[0.037]				
$EXIM_{p,o} \ge 0.45\% \times Post_t$			-0.062			
•			(0.020)			
			[0.0017]			
Fixed Effects						
Exporter×Year	\checkmark	\checkmark	\checkmark			
Product (4-digit)×Year	\checkmark	_	_			
${\sf Product(6-digit)}{\times}{\sf Importer}{\times}{\sf Year}$	_	\checkmark	\checkmark			
Observations	23,775,713	23,775,713	23,775,713			

Reduction of Export in Custom Data: Different Weighting


Dependent variable	Δ Exports						
Weighting	EV	VW: 1%	VW, invariant: 5%	VW, invariant: 1%			
	(1)	(2)	(3)	(4)			
$EXIM_{p,o} \times Post_t$	-3.49	-5.77	-5.29	-5.17			
	(1.86)	(2.73)	(2.44)	(2.52)			
	[0.061]	[0.034]	[0.030]	[0.040]			
Fixed Effects							
Exporter×Year	\checkmark	\checkmark	\checkmark	\checkmark			
$\textbf{Product (6-digit)} \times \textbf{Importer} \times \textbf{Year}$	\checkmark	\checkmark	\checkmark	\checkmark			
Observations	23,775,713	23,775,713	23,775,613	23,775,613			

Covariate Balance (2010–2014)


- Control for industry and exporter: within 0.2 standardized band (Imbens and Rubin, 2015)


Impact on Firms' Total Revenues: Progressive Controls

Event Study: Other Firm Outcomes

Impact on Firms' Total Revenues: Alternative Samples

Impact on US Product Exports: Aggregation

Dependent variable	Exports						
Level of aggregation	HS-4	HS-6	HS-6×Destination	HS	6-6×Destinatio	n	
	(1)	(2)	(3)	(4)	(5)	(6)	
$EXIM_{p,o} \times Post_t$	-4.40	-4.40	-4.40	-4.16	-5.02		
	(1.57)	(1.57)	(1.57)	(1.64)	(2.40)		
	[0.0052]	[0.0052]	[0.0052]	[0.011]	[0.037]		
$EXIM_{p,o} \ge 0.45\% \times Post_t$						-0.062	
,						(0.020)	
						[0.0017]	
Fixed Effects							
Exporter×Year	✓	✓	✓	✓	\checkmark	✓	
Product (4-digit)×Year	\checkmark	✓	✓	_	_	_	
Product (6-digit)×Year	_	_	_	✓	_	_	
${\sf Product~(6-digit)}{\times}{\sf Importer}{\times}{\sf Year}$	_	_	_	_	\checkmark	\checkmark	
Observations	109,199	8,419,512	23,775,713	23,775,713	23,775,713	23,775,71	

Reduction in Maritime Shipments (Datamyne)

Dependent variable Sample	Maritime Exports						
		Listed + private firms					
	(1)	(2)	(3)	(4)	(5)	(6)	
$EXIM_i \times Post_t$	-0.33	-0.33	-0.33	-0.32	-0.29	-0.27	
	(0.050)	(0.050)	(0.049)	(0.049)	(0.045)	(0.14)	
	[7.9e-11]	[7.9e-11]	[1.6e-11]	[6.0e-11]	[9.4e-11]	[0.045]	
Fixed Effects							
Post	\checkmark	\checkmark	_	_	_	_	
$Product \times Post$	_	_	\checkmark	_	_	_	
Destination×Post	_	_	_	\checkmark	_	_	
$Product \times Destination \times Post$	_	_	_	_	\checkmark	✓	
Observations	79,980	1,832,551	1,832,551	1,832,551	1,832,551	145,709	

Decrease in total revenue \Rightarrow firms cannot vent foreign sales domestically

Dependent variable	Revenues		
	(1)		
$EXIM_i \! imes \! Post_t$	-0.12		
	(0.035)		
	[0.00072]		
Fixed Effects			
$Exporter \times Year$	\checkmark		
$Industry{\times}Year$	✓		
Observations	25,174		

Decrease in capital, tangible and intangible (Peters and Taylor 2017)

Dependent variable	Revenues	Tangible capital	Intangible capital
	(1)	(2)	(3)
$EXIM_i \! imes \! Post_t$	-0.12	-0.14	-0.19
	(0.035)	(0.044)	(0.047)
	[0.00072]	[0.0014]	[0.00042]
Fixed Effects			
$Exporter { imes} Year$	\checkmark	✓	✓
$Industry \times Year$	\checkmark	\checkmark	\checkmark
Observations	25,174	24,635	25,015

Decrease in employment

Dependent variable	Revenues	Tangible capital	Intangible capital	Employment
	(1)	(2)	(3)	(4)
$EXIM_i \! imes \! Post_t$	-0.12	-0.14	-0.19	-0.098
	(0.035)	(0.044)	(0.047)	(0.032)
	[0.00072]	[0.0014]	[0.000042]	[0.0025]
Fixed Effects				
$Exporter { imes} Year$	\checkmark	✓	✓	✓
$Industry \times Year$	\checkmark	\checkmark	✓	\checkmark
Observations	25,174	24,635	25,015	22,902

No change in operational profit margin [Event study]

Dependent variable	Revenues	Tangible capital	Intangible capital	Employment	Net profit margin
	(1)	(2)	(3)	(4)	(5)
$EXIM_i \! imes \! Post_t$	-0.12	-0.14	-0.19	-0.098	-0.0063
	(0.035)	(0.044)	(0.047)	(0.032)	(0.0086)
	[0.00072]	[0.0014]	[0.000042]	[0.0025]	[0.46]
Fixed Effects					
$Exporter \times Year$	\checkmark	✓	\checkmark	✓	✓
$Industry \times Year$	\checkmark	✓	\checkmark	\checkmark	\checkmark
Observations	25,174	24,635	25,015	22,902	25,174

 \implies EXIM financing **not** infra-marginal \neq profit windfall artificially boosting firms' profitability

Dependent variable	Revenues	Tangible capital	Intangible capital	Employment	Net profit margin
	(1)	(2)	(3)	(4)	(5)
$EXIM_i \! imes \! Post_t$	-0.12	-0.14	-0.19	-0.098	-0.0063
	(0.035)	(0.044)	(0.047)	(0.032)	(0.0086)
	[0.00072]	[0.0014]	[0.000042]	[0.0025]	[0.46]
Fixed Effects					
$Exporter \times Year$	\checkmark	\checkmark	\checkmark	✓	✓
$Industry \times Year$	\checkmark	\checkmark	✓	\checkmark	\checkmark
Observations	25,174	24,635	25,015	22,902	25,174

Decrease in total revenue \Rightarrow firms cannot vent foreign sales domestically

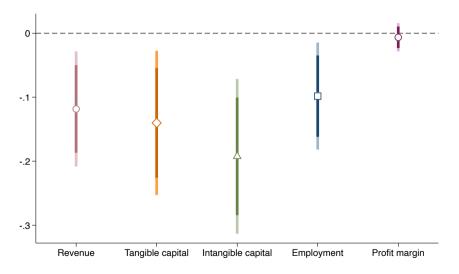
Dependent variable	Revenues	Tangible capital	Intangible capital	Employment	Net profit margin
	(1)	(2)	(3)	(4)	(5)
$EXIM_i \times Post_t$	-0.12	-0.14	-0.19	-0.098	-0.0063
	(0.035)	(0.044)	(0.047)	(0.032)	(0.0086)
	[0.00072]	[0.0014]	[0.000042]	[0.0025]	[0.46]
Fixed Effects					
$Exporter \times Year$	✓	✓	✓	✓	✓
$Industry \times Year$	✓	✓	✓	\checkmark	\checkmark
Observations	25,174	24,635	25,015	22,902	25,174

Decrease in capital, tangible and intangible (Peters and Taylor 2017)

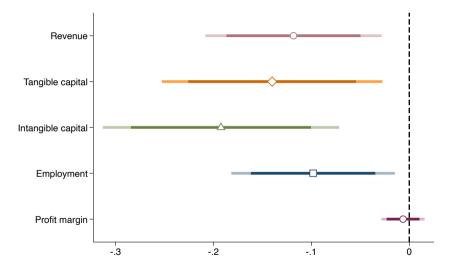
Dependent variable	Revenues	Tangible capital	Intangible capital	Employment	Net profit margin
	(1)	(2)	(3)	(4)	(5)
$EXIM_i \! imes \! Post_t$	-0.12	-0.14	-0.19	-0.098	-0.0063
	(0.035)	(0.044)	(0.047)	(0.032)	(0.0086)
	[0.00072]	[0.0014]	[0.000042]	[0.0025]	[0.46]
Fixed Effects					
$Exporter { imes} Year$	\checkmark	✓	✓	✓	\checkmark
$Industry \times Year$	\checkmark	✓	✓	✓	\checkmark
Observations	25,174	24,635	25,015	22,902	25,174

Decrease in employment

Dependent variable	Revenues	Tangible capital	Intangible capital	Employment	Net profit margin
	(1)	(2)	(3)	(4)	(5)
$EXIM_i \times Post_t$	-0.12	-0.14	-0.19	-0.098	-0.0063
	(0.035)	(0.044)	(0.047)	(0.032)	(0.0086)
	[0.00072]	[0.0014]	[0.000042]	[0.0025]	[0.46]
Fixed Effects					
$Exporter \times Year$	\checkmark	✓	✓	✓	\checkmark
$Industry \times Year$	\checkmark	\checkmark	✓	✓	\checkmark
Observations	25,174	24,635	25,015	22,902	25,174


No change in operational profit margin [Event study]

Dependent variable	Revenues	Tangible capital	Intangible capital	Employment	Net profit margin
	(1)	(2)	(3)	(4)	(5)
$EXIM_i \times Post_t$	-0.12	-0.14	-0.19	-0.098	-0.0063
	(0.035)	(0.044)	(0.047)	(0.032)	(0.0086)
	[0.00072]	[0.0014]	[0.000042]	[0.0025]	[0.46]
Fixed Effects					
$Exporter \times Year$	\checkmark	✓	✓	✓	✓
$Industry{\times}Year$	\checkmark	\checkmark	✓	\checkmark	\checkmark
Observations	25,174	24,635	25,015	22,902	25,174


 \implies EXIM financing **not** infra-marginal \neq profit windfall artificially boosting firms' profitability

Dependent variable	Revenues	Tangible capital	Intangible capital	Employment	Net profit margin
	(1)	(2)	(3)	(4)	(5)
$EXIM_i \times Post_t$	-0.12	-0.14	-0.19	-0.098	-0.0063
	(0.035)	(0.044)	(0.047)	(0.032)	(0.0086)
	[0.00072]	[0.0014]	[0.000042]	[0.0025]	[0.46]
Fixed Effects					
$Exporter \times Year$	✓	✓	✓	✓	\checkmark
$Industry{\times}Year$	\checkmark	\checkmark	✓	\checkmark	\checkmark
Observations	25,174	24,635	25,015	22,902	25,174

Alternative Presentation: Additional Effects on Firms: Treated Firms Scale Down

Alternative Presentation: Additional Effects on Firms: Treated Firms Scale Down

Backing out Domestic Sale Elasticity

- Define:
 - Elasticity of sales in market m with respect to EXIM: $\epsilon_{\text{FXIM}}^m = \epsilon^m$
 - Share of foreign revenues = $\omega_{foreign}$
- Decomposition:

$$\epsilon^{total} = \omega_{\mathit{foreign}} \times \epsilon^{\mathit{foreign}} + (1 - \omega_{\mathit{foreign}}) \times \epsilon^{\mathit{domestic}}$$

Backing out Domestic Sale Elasticity

- Define:

- Decomposition:

$$\epsilon^{total} = \omega_{foreign} imes \epsilon^{foreign} + (1 - \omega_{foreign}) imes \epsilon^{domestic}$$
 $\beta^{firm} = \omega_{foreign} imes \beta^{custom} + (1 - \omega_{foreign}) imes \epsilon^{domestic}$

Backing out Domestic Sale Elasticity

- Define:

- Decomposition:

$$\begin{array}{lll} \epsilon^{total} & = & \omega_{foreign} \times \epsilon^{foreign} & + (1 - \omega_{foreign}) \times \epsilon^{domestic} \\ \\ \underline{\beta^{firm}}_{\approx 2.4} & = & \omega_{foreign} \times \underline{\beta^{custom}}_{\approx 5} & + & \underbrace{(1 - \omega_{foreign})}_{[80\%-60\%]} \times \epsilon^{domestic} \\ \\ = & 0.12/5\% \end{array}$$

Backing out Domestic Sale Elasticity

- Define:

- Decomposition:

 \Rightarrow Infer $e^{domestic} \approx [0.6 - 1.7]$

Discussion Foreign - Domestic Pass-through Shock

– We have: $\epsilon^{domestic} pprox \ [0.6-1.7]$

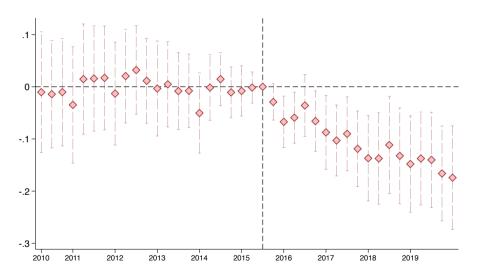
 \Rightarrow Foreign to domestic pass-through $\approx [0.13 - 0.35]$ $(\epsilon^{Domestic}/\epsilon^{Foreign} = [0.7/5 - 1.7/5])$

[Back] [Back to Appendix Outline]

Discussion Foreign - Domestic Pass-through Shock

- We have: $\epsilon^{domestic} pprox [0.6-1.7]$
 - \Rightarrow Foreign to domestic pass-through $\approx [0.13 0.35]$ ($e^{Domestic}/e^{Foreign} = [0.7/5 1.7/5]$)

- Empirics


- In line with export→domestic estimate: France (Berman, Berthou, Hericourt, 2015), USA (Ding, 2024)
- Opposite to domestic→export estimate: Spain (Almunia, Antras, Lopez-Rodriguez, Morales, 2021)

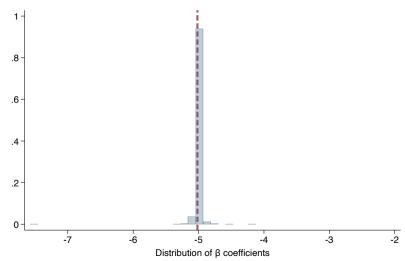
- Theory

- Reject canonical Melitz with constant marginal costs
- Consistent with models of intra-firm spillovers (i.e., <u>firm level</u> economies of scale & scope)
 - Financing frictions (e.g., Stein, 1997; Lamont, 1997; Giroud Mueller, 2019)
 - Shared non-rival inputs (e.g., Ding, 2024), vertical supply linkages (e.g., Boehm et al, 2019)

[Back to Appendix Outline]

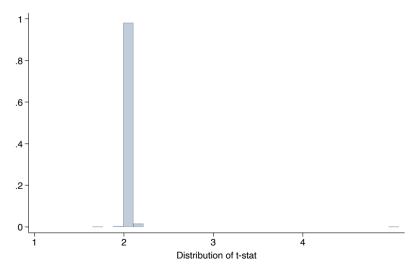
Event Study: Quarterly Sales

Robustness: Other Firm Controls

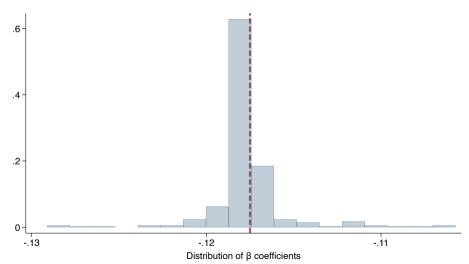

Dependent variable		To	tal Revenu	ies		
Sample		Exc. 10 largest recipients				
	(1)	(2)	(3)	(4)	(5)	(6)
$EXIM_i \! imes \! Post_t$	-0.12	-0.10	-0.100	-0.13	-0.11	-0.12
	(0.034)	(0.035)	(0.035)	(0.036)	(0.036)	(0.035)
	[0.00071]	[0.0039]	[0.0049]	[0.00048]	[0.0023]	[0.00079]
Fixed Effects						
Exporter×Year	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
Industry×Year	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
Fiscal month × Year	\checkmark	_	_	_	\checkmark	_
Size×Year	_	\checkmark	\checkmark	_	\checkmark	_
Balance sheet controls × Year	_	_	\checkmark	_	\checkmark	_
$Lobbying{\times}Year$	_	_	_	\checkmark	\checkmark	_
Observations	25,174	25,174	25,174	25,174	25,174	25,109

EXIM's Shutdown, Separate EXIM Programs

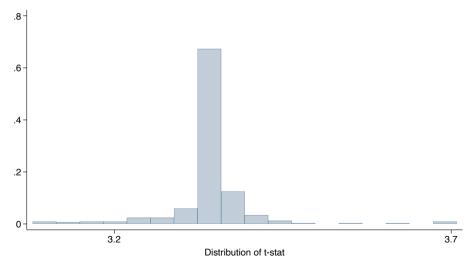
Dependent variable	Total revenues								
Weighting		EW			VW				
	(1)	(2)	(3)	(4)	(5)	(6)			
$EXIM_i \times Post_t$	-0.17			-0.15					
	(0.031)			(0.035)					
	[0.00000024]			[0.0000086]					
EXIM (working cap) _i \times Post _t		-0.15			-0.12				
		(0.059)			(0.068)				
		[0.011]			[0.087]				
EXIM (insurance) _{i} ×Post _{t}			-0.17			-0.16			
			(0.032)			(0.035)			
			[0.00000063]			[0.000075]			
Fixed Effects									
Exporter×Year	✓	✓	✓	\checkmark	✓	✓			
Size×Year	✓	✓	✓	✓	✓	✓			
Balance sheet controls \times Year	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓			
Observations	25,174	24,384	24,950	25,174	24,384	24,950			


Robustness: Distribution of β and t-stat in Custom Data

- Remove products one by one (hs-3 digit) = 173 separate regressions: Distribution of β


Robustness: Distribution of β and t-stat in Custom Data

- Remove products one by one (hs-3 digit) = 173 separate regressions: Distribution of t-stat


Robustness: Distribution of β and t-stat for Firms

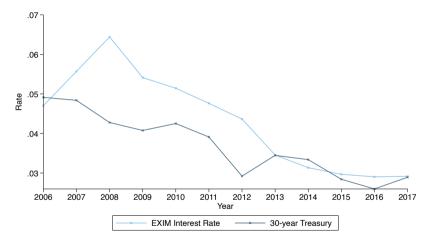
- Remove industry one by one (sic-4 digit) = 336 separate regressions: Distribution of β

Robustness: Distribution of β and t-stat for Firms

- Remove industry one by one (sic-4 digit) = 336 separate regressions: Distribution of t-stat

Robustness: Different Industry Levels

Dependent variable		Total rev	enues	
	(1)	(2)	(3)	(4)
$EXIM_i \times Post_t$	-0.14	-0.12	-0.11	-0.13
	(0.034)	(0.035)	(0.033)	(0.047)
	[0.000023]	[0.00037]	[0.00054]	[0.0052]
Fixed Effects				
Exporter×Year	\checkmark	\checkmark	\checkmark	\checkmark
Industry (1-digit)×Year	\checkmark	_	_	_
Industry (2-digit)×Year	_	\checkmark	_	_
Industry (3-digit)×Year	_	_	\checkmark	_
Industry (4-digit)×Year	_	_	_	\checkmark
Observations	25,109	25,109	25,109	25,109


Different Winsor and Construction for LHS

Dependent variable	Revenues	Tangible capital	Intangible capital	Employment	Net profit margin
	(1)	(2)	(3)	(4)	(5)
			LHS: winsor 1%		
$EXIM_i \! imes \! Post_t$	-0.16	-0.19	-0.29	-0.12	-0.0085
	(0.044)	(0.060)	(0.069)	(0.040)	(0.0089)
	[0.00017]	[0.0015]	[0.000026]	[0.0032]	[0.34]
		<u>L</u> +	IS: winsor 4× interq	uartile	
$EXIM_i \! imes \! Post_t$	-0.12	-0.13	-0.17	-0.098	-0.0076
	(0.034)	(0.044)	(0.044)	(0.035)	(0.0069)
	[0.00045]	[0.0041]	[0.00016]	[0.0049]	[0.27]
			LHS: midpoint grow	<u>vth</u>	
$EXIM_i \times Post_t$	-0.081	-0.096	-0.11	-0.10	-0.0066
	(0.031)	(0.037)	(0.036)	(0.038)	(0.0078)
	[0.010]	[0.0094]	[0.0023]	[0.0062]	[0.40]

Robustness: Different Winsorizing

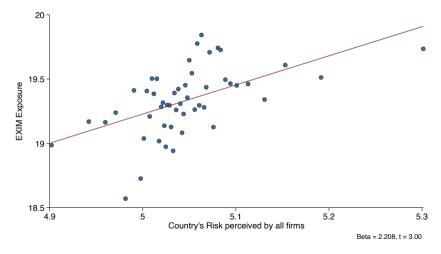
Dependent variable	Total revenues								
Winsorization	1%	2%	3%	4%	5%	10%			
	(1)	(2)	(3)	(4)	(5)	(6)			
EXIM×Post	-0.24*** (0.067)	-0.20*** (0.048)	-0.19*** (0.043)	-0.18*** (0.040)	-0.18*** (0.037)	-0.15*** (0.027)			
Fixed Effects									
Firm	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Industry×Year	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
$Destinations \times Year$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Observations	28,386	28,386	28,386	28,386	28,386	28,386			

Interest Expense

EXIM Interest Rate is defined as a Loan Interest Expense on U.S. Treasury Borrowings (EXIM annual Statement of Net Costs) divided by the Intragovernmental Borrowings from and Amounts Payable to the U.S. Treasury (EXIM annual balance sheets).

Firm Financing Friction (λ_i) Heterogeneity

Proxies: Leverage (e.g., Giroud and Mueller, 2016; Giroud and Mueller, 2019); Dividends (dividends / EBITDA) (e.g., Fazzari, Hubbard and Petersen, 1988)); Financing frictions mentioned in 10-K (Hoberg and Maksimovic, 2015); Current liability/EBITDA (coverage ratio)


Dependent variable		Investment						
Financing frictions proxy:		Leverage	Dividends intensity	Hoberg and Maskimovic (2015)	Coverage ratio			
	(1)	(2)	(3)	(4)	(5)			
$\textit{EXIM}_i \times Post_t \times \textit{I}_i^{Constrained}$	-0.16*** (0.044)	-0.11*** (0.039)	-0.12*** (0.047)	-0.075** (0.039)				
Fixed Effects (interacted) Exporter × Year	√	√	√	√				
$Industry \times Year$	\checkmark	\checkmark	\checkmark	\checkmark				
Observations	23,985	23,942	22,285	24,626				

Destination Country (τ_m) Heterogeneity

Dependent variable			Export			
Market frictions proxy:	F	Risk perceptio	Rule of	Financial		
	Any	Financial	Foreign	law	development	
	(1)	(2)	(3)	(4)	(5)	
$EXIM_{p,o} \times Post_t \times I_d^{Constrained}$	-2.08**	-3.14***	-2.28**	-2.44***	-2.38***	
	(0.98)	(1.22)	(1.08)	(0.99)	(0.99)	
Fixed Effects						
Product (6-digit) \times Destination \times Year	\checkmark	\checkmark	\checkmark	\checkmark	✓	
$Origin \times Year \times I_d^{Constrained}$	\checkmark	\checkmark	\checkmark	\checkmark	✓	
$EXIM_{p,o} \times Post_t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Observations	1,661,218	1,661,218	1,661,218	3,341,610	3,255,834	

[Back] [Back to Appendix Outline]

EXIM financing strongly correlated with the riskiness of a destination country

EXIM Exposure

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Risk (by all)	2.265***	2.208***						
	(0.743)	(0.739)						
Risk (by financial)			1.702**	2.027***				
			(0.642)	(0.607)				
Risk (by foreign)					1.570*	1.433*		
					(0.888)	(0.810)		
Risk (by domestic)							-0.005	0.041
							(0.083)	(0.077)
Controls	_	✓	_	✓	_	✓	_	✓
Country FE	✓	✓	\checkmark	✓	✓	\checkmark	\checkmark	✓
Year FE	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓
Observations	822	795	822	795	822	795	668	651

EXIM Exposure

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Risk (by all)	2.265***	2.208***						
	(0.743)	(0.739)						
Risk (by financial)			1.702**	2.027***				
			(0.642)	(0.607)				
Risk (by foreign)					1.570*	1.433*		
					(0.888)	(0.810)		
Risk (by domestic)							-0.005	0.041
							(0.083)	(0.077)
Controls	_	√	_	✓	_	√	_	√
Country FE	✓	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓
Year FE	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
Observations	822	795	822	795	822	795	668	651

EXIM Exposure

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Risk (by all)	2.265***	2.208***						
Risk (by financial)	(0.743)	(0.739)	1.702** (0.642)	2.027***				
Risk (by foreign)			(0.042)	(0.007)	1.570* (0.888)	1.433* (0.810)		
Risk (by domestic)					(0.888)	(0.810)	-0.005 (0.083)	0.041 (0.077)
Controls	_	√	_	√			_	<u>√</u>
Country FE	✓	✓	✓	✓	✓	✓	✓	✓
Year FE	✓	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓
Observations	822	795	822	795	822	795	668	651

EXIM Exposure

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Risk (by all)	2.265*** (0.743)	2.208*** (0.739)						
Risk (by financial)			1.702** (0.642)	2.027*** (0.607)				
Risk (by foreign)					1.570* (0.888)	1.433* (0.810)		
Risk (by domestic)							-0.005 (0.083)	0.041 (0.077)
Controls	_	✓	_	✓	_	✓	_	✓
Country FE	✓	✓	\checkmark	✓	✓	\checkmark	\checkmark	✓
Year FE	✓	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓
Observations	822	795	822	795	822	795	668	651

EXIM Budget Allocation Process

- Congressional Budget Justification submitted at the beginning of each fiscal year:
 - Key Costs: Administration, Programs, Defaults/Losses
 - Additional Costs: Cybersecurity, SMEs, MWOBs Support
- EXIM's Self-Financing:
 - Used directly to offset operating expenses and program budget
 - Sent to Treasury to offset the U.S. budget deficit at the end of each fiscal year