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Since the finance industry is transforming into a data industry, measuring the quantity
of data investors have about various assets is important. Informed by a structural model,
we develop such a cross-sectional measure. We show how our measure differs from price
informativeness and use it to document a new fact: data about large high-growth firms is
becoming increasingly abundant, relative to data about other firms. Our structural model
offers an explanation for this data divergence: large high-growth firms’ data became more
valuable, as big firms got bigger and growth magnified the effect of these changes in size.
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Data are becoming more central to the practice of finance. To address the
myriad of questions that are arising about data value and data choice, we need
a quantitative measure of data being used by market participants. Firms want
to know: how much do others know about various types of assets? This paper
develops a data measure to answer this question.

The challenges of measuring data processing are manyfold. For one, it is
not directly observable. While some of it is bought and sold, much of it is
not. Proxies are available: like counts of news stories, information technology
expenditures, or analyst coverage. These are suggestive, but are quite crude,
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especially if one wants a precise answer to the question: how much information
about stocks did investors extract through data processing? Measures of the
information contained in market prices reflect the amount of data, and are
influenced by market volatility or the price sensitivity to data, factors that differ
across assets.

We address these challenges by building a simple structural model to guide
our measurement. The model shows how data are related to and yet distinct
from concepts like price informativeness. It also provides a formula to correct
a price information measure for the effect of asset characteristics and obtain a
pure measure of data.

Next, we use this toolkit to study cross-sectional patterns in data in the
U.S. equity market over the past few decades. We group assets by size and
growth prospects: we chose these dimensions because they drive the value
of data processing in the model. Our analysis reveals a new fact: diverging
trends in data processing across different assets. Investors in large high-growth
firms are basing their decisions on more and more data. For other assets,
data appear stagnant, in comparison. In other words, ever-growing reams of
financial data may be helping price assets more accurately. But this additional
data might not deliver financial efficiency benefits for the vast majority
of firms. This divergence is consistent with reduced-form measures, like
price informativeness measures and analyst coverage patterns, with different
magnitudes. However, quantifying the magnitude of the divergence in units of
data precision is valuable, beyond the reduced-form evidence.

The third contribution of the paper is to explore data valuation. We find
that the value of data depends on firm size and growth. This finding is what
motivated us to sort firms by size and growth in the empirical analysis. These
are dimensions along which data choices should vary. When we use size and
growth estimates to quantify data value, we uncover a potential explanation for
data divergence: the value of large, high-growth firm data has diverged, as large
firms have grown relatively larger.

Section 1 begins with a simple model designed to relate data precision to
observables. Our theoretical framework is a standard noisy rational expectations
framework with multiple assets. The theory points to a particular moment
as a natural starting point for our analysis of data processing: estimate the
coefficient for prices in a regression of future cash flows on a constant, prices
and controls. This coefficient, referred to as price informativeness by papers like
Bai, Philippon, and Savov (2016) measures how closely prices reflect future
firm outcomes. This is obviously affected by the amount of data processed
but also depends on other firm characteristics, making trends in this variable
difficult to interpret or attribute solely to changes in data processing. Our model
overcomes this difficulty: it offers a simple expression that relates the price
informativeness measure to data, in a way that holds with minimal theoretical
assumptions. Specifically, it can be decomposed into components that depend
on data processing, cash flow growth, and volatility. That cash flow and volatility
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can be directly estimated from financial market observables allows us to back
out a precise measure of data processed by investors.

Section 2 provides detail of how we estimate our model structurally. This
includes the description of our sample, our variable construction, as well as the
moments used for the structural estimation.

In Section 3, we report how informativeness of prices changes across different
classes of assets and decompose that change into changes in volatility, growth
and data. We find that, over the last 50 years, data about most firms has stagnated.
However, one category of data has become much more abundant: information
about large high-growth firms. Strikingly, while firm growth and volatility have
also changed over time, their changes work against this trend for the most part.
For example, by themselves, they would imply falling price informativeness
for large, high-growth firms as well. Thus, our measurement exercise reveals
that data divergence is the key to understanding the changes over the last few
decades. We also contrast our measure, both theoretically and quantitatively,
with other measures, such as price informativeness, comovement, and absolute
price informativeness.

Finally, Section 4 uses the model to explore the underlying drivers of this
rising abundance of data processing on large, high-growth firms. Specifically,
we compute a model implied value of data, which is increasing in the size
of the firm, volatility of its cash flows and growth prospects. While this is
not surprising per se, the model yields a simple formula that shows exactly
how these characteristics interact, offset, and amplify each other. This measure
allows us to precisely rank assets based on the value of learning about them,
which then predicts the types of assets are learned about.

We find that value of data about large high-growth stocks has diverged in
recent years, which offers a potential explanation for the trends we see in data
processing. A key factor behind this divergence is a similar pattern in firm
size: large firms got much larger, compared to small firms. Since an increase
in size allows investors to take larger positions based on their data processing,
the divergence in size makes larger firms even more attractive to learn about.
Finally, growth amplifies changes in the value of data. Growth multiplies size in
data value. Although data for all large firms became more valuable as large firms
got bigger, in most decades, this effect was strongest for the large high-growth
firms. The fact that our prediction about the value of the data is consistent with
the data patterns we see, both offers an explanation for our facts and bolsters
our confidence in our measurement approach.

Thus, as overall data processing capacity increased in the economy, most
of it seems to have gone to learning about the prospects of large high-growth
firms. Other types of firms benefited little from this data revolution.

Our methodology is most related to Bai, Philippon, and Savov (2016) and
Davila and Parlatore (2016b), who propose measures of price informativeness.
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Their measure captures the ability of prices to forecast or aggregate information.
Such a measure is valuable because it may relate to real efficiency.1

Similarly, measures of comovement, synchronicity, or R2 (Durnev, Morck,
and Yeung 2004) quantify aggregate price variation, relative to stock-specific
price variation. Our question differs. We want to know how the allocation
of financial data precision, across asset types, has changed over time. Our
measure is valuable because we need it to value or choose data. Section 2.3
compares these measures and reveals important differences: noise, size, and
growth all drive a wedge between the previously used price informativeness or
comovement measures and our data measure. We measure these wedges and
find they are quantitatively large. Finally, previous exercises did not explain
why trends emerged. Our approach does.

Empirical work in this area primarily uses proxies for data or information,
such as news consumption (Ben-Rephael et al. 2021), social media text
(Ranco et al. 2015), analyst coverage (Hong and Kacperczyk 2010; Kelly and
Ljungqvist 2012), or earnings announcements (Martineau 2017). These papers
measure the effect of a particular information channel and for the most part,
are interested in cross-sectional determinants rather changes over time. Our
goal is to measure all the information investors use, from all channels, and to
document how that has changed over time.

Work by Stambaugh (2014) and Glode, Green, and Lowery (2012) does
explain the reason for overall information trends. But their focus is on aggregate
trends that affect all assets. These authors highlight forces, such as rising
institutional ownership and indexation. Such forces could be incorporated into
our measurement framework by changing the marginal benefit of all firms’
data. But our focus is on why these trends differ across asset classes and what
part of that change is information versus divergent asset characteristics.

Finally, the way in which we model data has its origins in information
theory/computer science, and is similar to work on rational inattention (Sims
2003; Maćkowiak and Wiederholt 2009; Kacperczyk, Nosal, and Stevens
2019). Similar equilibrium models with information choice have been used to
explain income inequality (Kacperczyk, Nosal, and Stevens 2019), information
aversion (Andries and Haddad 2020), home bias (Mondria, Wu, and Zhang
2010; Van Nieuwerburgh and Veldkamp 2009), and mutual fund returns (Pástor
and Stambaugh 2012), among other phenomena. Related microstructure work
explores the frequency of information acquisition and trading (Kyle and
Lee 2017; Dugast and Foucault 2018; Chordia, Green, and Kottimukkalur
2018; Crouzet, Dew-Becker, and Nathanson 2020). Empirical work in this

1 An extensive literature tackles how asset price informativeness affects real investment. Ozdenoren and
Yuan (2008), Bond and Eraslan (2010), Goldstein, Ozdenoren, and Yuan (2013), David, Hopenhayn, and
Venkateswaran (2016), Dow, Goldstein, and Guembel (2017), Dessaint et al. complement our work by showing
how the financial information trends we document could have real economic effects. Bond, Edmans, and Goldstein
(2012b) review this literature and conclude that the relationship between market efficiency and real efficiency is
not necessarily monotone and depends on the environment.
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vein Katz, Lustig, and Nielsen (2017) finds evidence of rational inattention
like information frictions in the cross-section of asset prices. What we add
to this literature is using the theory for structural estimation. Our structure
allows us to distinguish changes in information from changes in asset
characteristics.

1. A Structural Framework for Data Measurement

The main objective of the paper is to develop a measure of investors’ data
precision from asset prices. This is related to measures of price informativeness.
But we know that informativeness also reflects differences in price-earnings
ratios, related to firm growth, and differences in firm price volatility. One
approach would be to simply control for such asset characteristics in a linear
regression. However, one problem with this approach is that growth and
volatility themselves affect the value of collecting and processing data and
therefore, are likely to be correlated with investors’ data. As such, adding them
as controls can remove some of what we hope to measure. Another problem is
nonlinearity: the effect of growth, for example, is probably not additive. In fact,
this is exactly what happens in our model, where it interacts with the measure
of data multiplicatively. Furthermore, our goal is to develop a measure of data
processing that guides the choice of valuation of data by investors. To do so, it
needs to be consistent with—or interpretable in terms of—a valuation or data
portfolio choice model. For all these reasons, we turn to a structural approach
to inform us about how to properly measure data.

We work with the simplest theoretical framework that achieves this objective.
The setup is a standard noisy rational expectations model with multiple assets,
in the spirit of Admati (1985) and Van Nieuwerburgh and Veldkamp (2009). The
model yields simple, intuitive expressions for the objects of interest, including a
measure of price informativeness, as a function of both asset characteristics and
investor data. These expressions form the basis for an empirical strategy that
disentangles asset characteristics from investor data, using observable moments
of stock prices and cash flows.

Model A unit measure of investors trade multiple stocks (indexed by f ). We
assume that these assets belonging to different groups (indexed by j ), where
assets within a group share a number of parameters. The empirical analogs and
the rationale for choosing will be described in detail in Section 2.2. A share is a
claim to a stream of dividends. Dividends grow at different rates across groups.
We denote the group-specific growth rate by gj . The flow dividend of stock f

in group j in period 1 has two random innovations: one correlated across firms
and the other idiosyncratic (i.e., stock specific). These are denoted by ε̄fj1 and
εfj1, respectively. For our baseline analysis, we will assume that the correlated
innovation has a one-factor structure; that is, it is the product of a firm-specific
loading and the realization of an aggregate factor: ε̄fj1 = β̃f,j ε̄1, where β̃f,j is
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the firm-specific loading.2 The idiosyncratic component is normally distributed
with a zero mean. Formally,

d∗
fj1 =gjd

∗
fj0 + ε̄fj1 +εfj1,, εfj1 ∼N (0,�jd ). (1)

The dividends for periods s =2,3.... are given by d∗
fjs =gs−1

j d∗
fj1.

The assumption of no residual uncertainty after period 1 is only for simplicity.
It implies that the value of the stock at the end of period 1 is given by 3

V ∗
fj1 ≡

∞∑
s=1

d∗
fjs

rs
=

r

r−gj

d∗
fj1 . (2)

where r is the riskless rate. Note how gj enters the factor that determines the
earnings-to-valuation ratio. This will be helpful later on for the interpretation
of gj as growth.

Supply The supply of each asset has a (commonly known) asset-specific
mean xfj as well as an unobserved random component x̃fj ∼N (0,�jx). Assets
within a group have the same mean supply, that is, xfj =xj . Formally, the total
supply of asset f in group j is xj + x̃fj shares. Thus, as with the cash flow
process, parameters driving asset supply are group specific.

Preferences and portfolio choice. Investors, indexed by i, are endowed with

an initial wealth W
i

and mean-variance preferences over their end-of-period
wealth.

At the start of period 1, investors make portfolio choices, conditional on an
information set I i . Formally, investor i with absolute risk aversion ρi chooses
{qi

j }, the number of shares of asset j , to solve:

max
{qi

fj
}

E[Ui |I i] = max
{qi

fj
}

ρiE
[
Wi |I i

]− ρ2
i

2
V ar(Wi |I i) , (3)

where Wi =rW
i
+
∑

j

∑
f

qi
dj (V ∗

fj1 −rP ∗
fj1).

r is the riskless rate, P ∗
fj1 is the equilibrium market clearing price of asset f

in group j and V ∗
fj1 is the present discounted asset value from (2). At the end

of the period, dfj1 is observed, investors sell their holdings and consume.
This mean-variance representation is a simple way to a broad array of

preference specifications. For example, the coefficient of absolute risk aversion

ρi is allowed to be any nonrandom function of initial wealth, W
i
. Thus,

2 Appendix B.4 shows that our results hold under a more complicated, group-level multifactor structure.

3 An obvious alternative assumption is that all uncertainty is not resolved at the end of period 1 and investors sell
their assets at a market price, which depends, among other things, on the information of future participants, as in
Farboodi and Veldkamp (2020). This delivers a similar solution, except that the dependence on future information
introduces another fixed point problem, which complicates the analysis considerably, without providing additional
insight.
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these preferences could be derived from decreasing absolute risk aversion
preferences, or even constant relative risk aversion, in initial wealth.

Information. Our focus is on data used to pick stocks, rather than for
timing the overall market. This focus is motivated by our interest in cross-
asset differences, which empirically seem to be driven mostly by stock-specific
factors. In our sample, more than 90% of the variation in prices is stock specific.
Moreover, time variation in cross-sectional moments is easier to precisely
estimate. 4

With this goal in mind, we make the simplifying assumption that all investors
know the common component of the asset payoffs (i.e., the aggregate factor ε̄1).
This assumption, along with the structure of payoffs and preferences, allows us
to analyze asset-specific learning without making further assumptions on the
distribution of the common component.

For each risky asset f in group j , investor i privately observes ki
j data

points. We call ki
j investor i’s net private data about asset j . Each data point

is a noisy private signal (with errors that are iid across assets and investors) of
the end-of-period asset-specific cash flow εfj1:5

η
i,m
fj =εfj1 +e

i,m
fj , e

i,m
fj ∼iid N (0,1) ,

for m∈{1,...,ki
j }. The average amount of private data about asset j in the

market is

Kj =
∫

ki
j di . (4)

In addition, investors also observe the realized market-clearing price P ∗
fj1

(characterized later) and also optimally incorporate the information contained
in that price. Thus, investor i’s information set, for asset f in group j , consists
of the dividend realization in period 0, a set of private signals, and the market-

clearing price: I i = {{d∗
fj0},{ηi,m

fj }k
i
j

m=1,{P ∗
fj1}}. We conjecture (and later verify)

that the information in the market price can be expressed as a signal of the
cash flow innovation, εfj1 with additive Gaussian noise. Then, Bayes’ law
for normally distributed random variables yields the following expression for
investor i’s precision about the cash flow d∗

fj1 of any assets in group j , denoted
by (�i

j )−1:

(�i
j )−1 ≡V ar[εfj1|I i]−1 =�−1

jd +(�i
jp)−1 +ki

j , (5)

4 Having said that, we believe that one could easily adapt the framework and the empirical strategy to measure
data about aggregate factors instead.

5 This language suggests discrete numbers of signals. Since working with discrete variables complicates the
analysis considerably and adds little insight, we treat ki

j
as a continuous variable. Formally, we can take a quasi-

continuous limit. If each data point has variance α, this limit takes the number of data points to be αki
j

and then

sends α→∞. At the limit, the precision of the set of signals becomes continuous.
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where (�i
jp)−1 is the precision of the market price signal (to be characterized

later). This notation allows for the possibility that different investors learn
differently from market prices. This could occur, for example, if it was costly
to extract information from prices. The symmetric case, with (�i

jp)−1 =�−1
jp is

a natural starting point and is maintained in our characterization of equilibrium
below.

The average marketwide precision, denoted by
(
�j

)−1
, is

(�j )−1 =
∫

(�i
j )−1di =�−1

jd +
∫

(�i
jp)−1di+

∫
ki
j di

=�−1
jd +�−1

jp +Kj . (6)

where �−1
jp and Kj are (marketwide) averages of the precision gained from the

price signal and net private data, respectively.
Equilibrium A rational expectations equilibrium is a set of functions

for prices P ∗
fj1, and portfolio choices qi

fj such that (a) given the induced
information sets I i , the portfolio choices solve (3), and (b) markets clear, that
is, ∀f,j ,

∫
qi

fj di =xj + x̃fj .
To solve for the equilibrium, we conjecture a linear form for the price function

and solve for the corresponding coefficients. We relegate the details to the
appendix and present the solution in the following result:

Proposition 1. In equilibrium, the price of asset j is given by

rP ∗
fj1 =Afj +Bjεfj1 +Cj x̃fj , (7)

where Afj = P̄fj1 +

(
r

r−gj

)
gjd

∗
fj0 − ρ̄

(
r

r−gj

)2

�j x̄j , (8)

Bj =
r

r−gj

(
1− �j

�jd

)
, (9)

Cj =−
(

r

r−gj

)2

�j

(
Kj�jx

ρ̄
+1

)
, (10)

�−1
jp =

(
Bj

Cj

)2

�−1
jx . (11)

ρ̄−1 :=�j

∫
ρ−1

i (�i
j )−1di is a precision-weighted average of investors’ risk

tolerance.6 The term P̄fj1 captures the valuation of the common component
of dividends (ε̄fj ).

6 Assuming ρ̄ is constant across assets amounts to assuming that risk tolerance and precision are either uncorrelated
or do not covary differently for different assets.
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Equation (9) shows that the coefficient for current innovations to cash flows,

Bj , is the usual Gordon growth factor, r
r−gj

, adjusted by a factor
(

1− �j

�jd

)
.

This factor captures the effects of data processing by investors, thus we call it
data. If investors do not have data about asset j (apart from their prior), then
the average posterior variance �j is equal to the prior variance �jd , and the
coefficient Bj =0. In other words, the price cannot possibly reflect information
that no investor has learned. At the other extreme, if the average investor is
perfectly informed about current cash flows, then �j =0 and Bj = r

r−gj
, the

Gordon growth factor. Thus, the extent to which the stock price covaries with
cash flow innovations is informative about how much data related to asset j is
processed by the average investor.

Equation (11) characterizes the precision of the price as a signal of
future dividends. The linear form of the equilibrium price implies that it is

informationally equivalent to
rP ∗

fj1−Afj

Bj
=εfj1 +

Cj

Bj
x̃fj , that is, a noisy signal of

the innovation to cash flows with a precision
(

Bj

Cj

)2
�−1

jx . The signal is more

precise when the sensitivity of the equilibrium price to fundamentals relative
to supply noise (Bj/Cj ) is high, or the variance of supply �jx is low.

Next, we construct a moment, which we term stock-specific price
informativeness, or PINF , that will guide our empirical strategy in the
following section. Formally, we define s-period-ahead stock-specific price
informativeness of group-j as

PINFjs ≡ Cov(d∗
fjs,P

∗
fj1|d∗

fj0,ε̄1)

StdDev(P ∗
fj1|d∗

fj0,ε̄1)
. (12)

This moment captures the extent to which the stock-specific components of
current prices and cash flows s periods ahead covary with each other. As we
will see in the next section, this can be easily estimated with a simple linear
regression using data on market capitalization, cash flows and assets.

Our framework implies that PINFjs can be expressed as follows:

PINFjs =
�jd

StdDev(Pfj1)︸ ︷︷ ︸
volatility

gs
j

r−gj︸ ︷︷ ︸
growth

[
1− �j

�jd

]
︸ ︷︷ ︸

data

. (13)

where Pfj1 =rP ∗
fj1 −Afj is the component of prices that pertains to the stock-

specific innovation, εfj1. Equation (13) forms the core of our analysis. It reveals
that PINFjs can be decomposed into three parts. We term the first component
volatility: it is the ratio of the variability of cash flow innovations to that of
prices. All else equal, an asset whose prices are more volatile (relative to cash
flows) will exhibit a lower degree of informativeness.7

7 This insight also appears in Dávila and Parlatore (2019).
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The second component is related to growth. Intuitively, a faster growing
cash flow process implies that prices load on current cash flows to a greater
extent. This increases their covariance and contributes to a higher PINF . In
our structure, growth prospects (or equivalently, the cash flow “multiple”) are
summarized by the parameter gj . More generally, the growth component is
related to any characteristic that scales up prices, relative to cash flows.

Finally, the last term reflects data: the more information the average investor
has about cash flows, the lower is �j and therefore, the higher is PINFjs .
This link is what makes PINF an informative moment for our purposes. Our
empirical strategy involves estimating the growth and volatility components
from observables and using them to recover the data component from the
observed PINF . 8

2. Estimation of the Structural Model

This section describes how we estimate our structural model to construct our
data measure. We describe our sample in detail, as well as construction of
variables and moments used for the structural estimation. We also discuss how
these estimates relate the corresponding objects in the model.

2.1 Data sample and data adjustments
All data are for the U.S. market, over the period 1962–2016. Stock prices
come from CRSP (Center for Research in Security Prices). All accounting
variables are from Compustat. We measure prices at the end of March and
accounting variables at the end of the previous fiscal year, typically December.
This timing convention ensures that market participants have access to the
accounting variables that we use as controls. In line with common practice, we
exclude firms in the finance industry (SIC code 6).

The equity valuation measure, that is, the empirical counterpart for the
price P ∗

fj1 in the model, is market capitalization over total assets, denoted by
M∗

f,j,t /A
∗
f,j,t . For our cash flow variable, d∗

fjs , is proxied using earnings over
assets. More precisely, we take earnings before interest and taxes (the EBIT

variable in Compustat), denoted by E∗
f,j,t and divide by current total assets

A∗
f,j,t . Both ratios are winsorized at 1%.
We make a couple of adjustments to the raw data. The first is to deal with

inflation, which can create predictability in nominal earnings and prices. This is
particularly relevant for periods of high inflation, such as the 1960s and 1970s.
Therefore, we adjust all cash flow variables with a gross domestic product

8 Note that this data component reflects the effect of both information extracted from the price signal and net
private data processing. We will show how we can disentangle these different types of data from observable time
series.
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(GDP) deflator. The second pertains to exiting firms. Our preferred solution is
to only consider periods during which a firm has nonmissing information.9

Finally, motivated by our focus on measuring stock-specific data, we remove
the common (or aggregate) components from both cash flows and prices. To
do this, we first construct the analogous “market” variables using total assets,
market capitalization and EBIT for the universe of S&P 500 firms. Then,
separately for each stock in our sample, we project our cash flow and price
series for the period 1960–2012 on the corresponding market variables (and a
constant) and extract a residual. In what follows, we denote this firm-specific
component of prices and cash flows by

Mf,j,t

Af,j,t
and

Ef,j,t

Af,j,t
, respectively.

2.2 Variable construction
2.2.1 Size, growth, and volatility. Sorting, measuring, and mapping these
variables to the model is critical for our approach. We start by describing
our strategy to sort individual stocks into groups. We choose two particular
characteristics to construct our groups: size and growth. This choice is motivated
by two considerations. First, as we will show in Section 3, the value of data to an
investor is closely tied to the overall size of the asset and the growth prospects.
Second, these are canonical asset pricing groups, so using them allows us to
make contact with the empirical asset pricing literature that examines how large
and high-growth stocks differ from their small and low-growth counterparts.10

At the same time, the reader should not be led into thinking that we are pricing
risk factors, as would traditionally be done in that literature. Recall that our
price and cash flow variables have been stripped of common factors, leaving
only firm-specific components. As such, we are looking at whether firms with
these size and growth characteristics have different prevalence of data about
their firm-specific cash flows.

We group firms into Large and Small, based on whether or not they belong to
the 500 largest firms in terms of market capitalization. Next, we classify firms
into High-growth and Low-growth based on their book-to-market ratio (defined
as the difference between total assets and long-term debt, divided by the firm’s
market capitalization). Firms in the top-three deciles of book-to-market we call
low-growth firms, while those in the bottom-three deciles are our high-growth
firms. Combining these two dimensions yields four groups: Small High-growth,
Large High-growth, Small Low-growth, and Large Low-growth. The number
of firms in each of these groups for each decade starting with the 1960s is
reported in Table B1 in the appendix.

9 Our results are also robust if we make cash flows zero when the firm exits or to use a weighted industry cash
flow as a proxy, as in Bai, Philippon, and Savov (2016) (along with the delisting price as the equity valuation
variable).

10 We use the term “low-growth,” instead of “value” to distinguish between the asset characteristic from the asset
pricing factor. Of course, we could have used other asset pricing factors (e.g., momentum, beta) to group firms
as well, but their link to the value of the data about firm-specific factors is less clear.
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To understand why the empirical measures of size and growth correspond
to the objects x̄ and g in the model, we need to consider why these parameters
matter and then ask if these empirical measures capture the relevant concerns.

Size matters because it determines the amount of value available to profit
from, with good information. In reality, investors can more easily trade large
positions on the equity of larger firms. These are more valuable to learn
about because investors can make larger trades on such assets to exploit their
informational advantage. In the model, greater size means more shares (higher
x̄). Constructing the empirical analogue requires specifying what a share means.
This is just a normalization: 500 shares worth $2 each, with a variance of 4,
or one with 1,000 shares, worth $1 each, with a variance of 1, are isomorphic
representations. Our empirical notion of a share corresponds to a claim on $1
worth of the underlying assets. Thus, the number of shares is simply given by
the value (in dollars) of the firm’s assets. We then measure everything else—
prices, cash flows—consistent with this normalization. Specifically, prices and
cash flows “per share" are market cap and EBIT, divided by the dollar value of
the firm’s assets.

Growth (g) matters for data because it scales the earnings-to-valuation ratio.
Firms with high g have prices that are a high multiple of earnings and therefore
have prices that are very sensitive to earnings news. Growth is a scaling factor.
In the data, market-to-book performs a similar function. It scales up the asset’s
value for a given level of earnings. In both cases, growth increases the loading
of prices on cash flows, through the Gordon growth term r

r−g
. In other words,

the same amount of cash flow data affects high-growth firms’ prices by more.
The starting point for our approach to measuring data is estimating stock-

specific price informativeness as defined in (12) and characterized in (13).
Recall that this moment captures the extent to which stock prices in year t reflect
cash flows in year t +s and can be estimated from a regression of the latter on
the former, along with controls for other observable asset characteristics. Given
our interest in long-term trends, we perform this exercise separately for each
of the 4 groups in each decade (starting with the 1960s). Specifically, we run
the following cross-sectional regression separately for each asset group j and
decade:

Ef,j,t+s

Af,j,t

=αj +βj,s · Mf,j,t

Af,j,t

+γj ·Xf,j,t +εf,j,t+s (14)

where Ef,j,t+s /Af,j,t is the cash flow (EBIT ) of firm f in group j in year t +s,
scaled by its total assets in year t ; log(Mf,j,t /Af,j,t ) is market capitalization
scaled by total assets; and Xf,j,t are a set of firm-level controls, namely,
past earnings and industry fixed effects, meant to capture publicly available
information. We use s =3 in our estimation.
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To obtain the measure in (12), we scale the coefficient βj,s by the variability
of the regressor:11

PINFjs =βjs ·σM/A

j , (15)

whereσ
M/A

j denotes the cross-sectional standard deviation of
Mf,j,t

Af,j,t
(conditional

on controls). This strategy and the measure PINFjs is very closely related to
the one in Bai, Philippon, and Savov (2016).12 From our perspective, it is a
convenient starting point for recovering the object we are ultimately interested
in, namely, the extent of data processed about firm-specific factors.

3. Results

Next, we employ this framework to measure cross-sectional and time series
patterns of data in the market. We further separate this information into cross-
asset differences in the efficiency with which market aggregates net private
data, that is, investor data above and beyond what could possibly be extracted
from prices.

Equation (13) shows that we need to remove the effects of volatility and
growth from the estimate of informativeness in order to isolate the data
component. For this, we need quantitative estimates of these two components
for each group and decade. The volatility component is related to the variability
of the unpredictable innovation in cash flows and the (conditional) standard
deviation of prices. These are estimated by projecting our cash flow and price
measures on a set of controls and calculating the standard deviation of the
residuals (again, separately for each group and decade). The bottom panel of
Table 1 reports the resultant estimates for the variance of the innovation to cash
flows (�jd ). Dividing this by the (conditional) standard deviation of prices
yields the volatility component in (13).

Next, we turn to the estimation of the growth component. Recall that this
term arises because growth rates influence the factor by which earnings are
scaled in the equilibrium pricing Equation (7): in other words, the growth factor

r
r−gj

converts per-period cash flows to the same units as price. It is related to the

price-earnings ratio, though the latter will also pick up effects of informational
frictions and risk premiums.

We estimate growth rates (by group and decade) by running regressions
of cash flows on their lagged values. The resultant autoregressive coefficients
map directly onto gj and are reported in the top panel of Table 1. As we would
expect, high-growth firms generally have higher growth rates (relative to their

11 We use the absolute value of the estimated price informativeness, since the theory cannot reconcile negative
estimates (this only matters for a couple of observations and does not affect conclusions about longer-term
trends).

12 There are some important differences, both conceptual and measurement related. See Section 3.2 and Appendix
E for more details.
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Table 1
Estimated cash flow parameters: Persistence/growth gj , variance of innovation �jd

1960s 1970s 1980s 1990s 2000s 2010s

Persistence gj :
Small/high growth 0.830 0.877 0.702 0.725 0.740 0.741
Large/high growth 0.988 0.981 0.954 0.949 0.917 0.912
Small/ low growth 0.829 0.697 0.538 0.572 0.669 0.636
Large/ low growth 0.901 0.865 0.853 0.813 0.828 0.851

Variance of Innovations �jd :
Small/high growth 0.005 0.007 0.019 0.022 0.017 0.013
Large/high growth 0.002 0.002 0.002 0.003 0.003 0.003
Small/ low growth 0.002 0.004 0.009 0.008 0.009 0.006
Large/ low growth 0.002 0.001 0.001 0.001 0.002 0.001

Persistencegj is estimated by running regressions of cash flows on their lagged values, as specified in Equation (1).
�jd is estimated as the variance of residuals from a projection of cash flows on controls.

counterparts in the corresponding low-growth category). Assuming a riskless

interest rate of 2.5% (r =1.025), these estimates directly yield
gs
j

r−gj
, the growth

component.13

3.1 Data divergence
The estimates of PINF, along with the corresponding growth and volatility

components in (13), allow us to back out the information component 1− �̄j

�jd
,

our measure of data. Specifically, for each decade group, we divide the estimated
PINF for that decade group by the corresponding growth and volatility
components, as defined in (13), to back out the underlying data term:

1− �j

�jd

=
PINFj,s

gs
j

r−gj

�jd

Std(Pfj1)

. (16)

Equation (16) clearly shows how the three key empirical objects that
we measure, namely, price informativeness, growth, and volatility, drive our
estimate of data. Holding growth and volatility fixed, a higher PINF is a
sign of more data processing. And for a given PINF estimate, higher growth
or greater volatility of cash flows (relative to prices) correspond to less data
processing.

Our decade-by-group estimates for PINF and its components14 are reported
in Table 2. We plot these estimates along with fitted linear trend lines for each
series in Figure 1. Critically, the top-left panel shows that PINF has trended

13 In our baseline analysis, we use r =1.025 for the entire sample. In Appendix B, specifically in Figure B1, we
relax this assumption and show that our results are robust to using decade-specific values for interest rates.

14 For one decade group, the right-hand side of (16) produced an estimate larger than one, which would be
inconsistent with the structural model. We therefore top-coded those estimates using a bound of 0.95. This
adjustment made only a negligible difference to the overall trends.
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Table 2
Stock-specific price informativeness and its components

1960s 1970s 1980s 1990s 2000s 2010s

PINF
Small/high growth 0.012 0.003 0.003 0.008 0.013 0.007
Large/high growth 0.015 0.014 0.018 0.011 0.037 0.023
Small/ low growth 0.003 0.007 0.003 0.002 0.011 0.004
Large/ low growth 0.003 0.006 0.002 0.003 0.014 0.001
Volatility
Small/high growth 0.005 0.008 0.012 0.013 0.011 0.010
Large/high growth 0.002 0.002 0.003 0.002 0.002 0.003
Small/ low growth 0.016 0.054 0.064 0.044 0.037 0.034
Large/ low growth 0.012 0.017 0.012 0.011 0.013 0.008
Growth
Small/high growth 2.94 4.56 1.07 1.27 1.42 1.44
Large/high growth 25.87 21.34 12.33 11.31 7.17 6.69
Small/ low growth 2.91 1.03 0.32 0.41 0.84 0.66
Large/ low growth 5.91 4.06 3.60 2.54 2.88 3.53
Data
Small/high growth 0.84 0.08 0.22 0.50 0.80 0.50
Large/high growth 0.36 0.40 0.57 0.44 0.95 0.95
Small/ low growth 0.06 0.12 0.12 0.10 0.36 0.17
Large/ low growth 0.04 0.09 0.04 0.10 0.38 0.03

The table reports structurally estimated values of the various terms in Equation (13) using cash flow parameters
in Table 1. The left-hand side is estimated using Equations (14) and (15).

up for the Large/High-growth group, much faster than for all other groups.
The top-right panel reveals that changes in data played a central role in the
divergence.

The remaining panels in Figure 1 show the trends in other components.
In particular, the growth component (bottom-right panel) highlights why
it is important to distinguish between data and a measure like price
informativeness.15 Growth declines most dramatically for large/high-growth
assets. By itself, this trend should have reduced the informativeness of (the
stock-specific components of) those assets. Had this change been larger, we
might have found PINF and data moving in opposite directions. Instead,
the rise in data about large/high-growth firms was sufficiently large that it
overwhelmed the effect of declining growth on informativeness.16

Next, we explore where the trends in data came from. Was the firm specific
data information mined from public prices, or was it extracted from other
sources? To answer this question, we decompose overall information, �̄−1

j ,
into its components as in (6). Specifically, the prior or unconditional precision
(�−1

jd ), the information content of the price signal (�−1
jp ) and the net private data

(Kj ). To estimate the second component, namely, the information conveyed by
the price signal, we run (14) with s =0 and calculate the variance of the residuals,

15 The decline in gj for large/high-growth firms is consistent with Gschwandtner (2012), who also finds a long-run
decline in the persistence of firms’ profit. This could reflect, for example, an increase in competition because of
globalization.

16 In Table B2 in Appendix B, we show that the differences across groups in the trends in data are statistically
significant.
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Figure 1
Data divergence: Trends in data and other components of stock-specific price informativeness
Graphical representation of Table 2. For each component, the dots represent the estimates reported in Table 2,
while the corresponding lines represent the (linear) trend.

denoted by V ar(efj ). Appendix A.3 derives the following mapping between
�jp and V ar(efj ):

�jp =
V ar(efj )·�jd

�jd −V ar(ej )
. (17)

Substituting the resultant estimates of �jp, along with the overall market

information �
−1
j and the prior precision, �−1

jd , into (6) yields the net private
data for each group-decade, Kj :

Kj =�
−1
j −�−1

jd −�−1
jp . (18)

Table 3 presents the estimates for price information �−1
jp and net private data

Kj , by group and decade. Figure 2 plots the associated fitted trend lines. They
show a generally declining trend in firm-specific market information across all
groups. The trends in total data, most notably the rise for Large/High-growth
stocks, can be attributed mostly to changes in net private rather than price
information.

Note from Table 3 that the estimates for net private data Kj are negative
in some cases, particularly in the early part of the sample for low-growth
stocks. This happens when the PINF (or more precisely, the price-earnings
covariance) is less than what it would be if all investors were learning the
maximum possible from market prices. In other words, this pattern suggests
that the average investor may not fully process all the information contained in
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Table 3
Sources of information

1960s 1970s 1980s 1990s 2000s 2010s

Price information, �−1
jp

:
Small/high growth 10 1 0 1 1 0
Large/high growth 80 18 82 41 55 16
Small/ low growth 77 20 3 0 3 0
Large/ low growth 130 105 72 41 8 1

Net private information, Kj :
Small/high growth 1013 12 15 45 236 75
Large/high growth 269 362 451 193 7151 5868
Small/ low growth −49 13 14 13 59 33
Large/ low growth −106 −33 −40 45 258 30

Price information and net private data are estimated using Equations (17) and (18), respectively.

Figure 2
Rising large/high-growth firm data come from net private information

Graphical representation of the trends in the estimates reported in Table 3. For each component, the plot shows
the linear trend fitted to the estimates from the table. Total is the sum of Price Information (�−1

jp
) and Net Private

Information (K). This total is the same as Data, plotted in Figure 1.

prices (e.g., because learning from prices is also costly). In such a scenario, our
approach to decomposing total data would overestimate price information �−1

jp ,
or equivalently, underestimate Kj . However, since price information accounts
for only a small fraction of total information, this source of mismeasurement
is small, relative to the trends in data processing.

3.1.1 Dating the data revolution. Table 3 also tells us when financial markets
started to embrace big data: net private data rose sharply during the 2000s for
all groups. Investors in all four types of assets more than quadruple their private
precision between the 1990s and 2000s. This is the same time as the widespread
adoption of information technology in the financial sector (Abis 2020) and is
consistent with a rapid advance in data technology in the last two decades.
But, more interestingly, this rise was the most stark for the large high-growth
firms: in other words, the data revolution disproportionately favored learning
about large/high-growth firms, contributing significantly to the trend of data
divergence.

3.1.2 Adjusting data for market power. We know that market power can
effect price informativeness, but how does it affect our measure of data? From
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?, we know that incorporating market power involves replacing the conditional
variance V [ft |Ii] with V [ft |Ii]+λ/ρ, where λ is Kyle’s lambda, the price
impact of a unit of demand and ρ is absolute risk aversion.

What this means for measurement is that, if we are ignoring investor market
power, we then are overestimating the conditional variance. Conversely, we are
underestimating data precision. So, our estimates might be considered a lower
bound on the size of the data stock. However, the measure of V [ft |Ii]+λ/ρ is
useful, by itself. This sum is the object that appears in the marginal value of
data when investors have market power.

3.2 Relating data to other information measures
There are a number of measures for the information embedded in prices in the
literature. In this subsection, we clarify how our data measure is different from
them.

3.2.1 Price informativeness. As we discussed earlier, PINF , which
measures stock-specific price informativeness is an input in our measurement
strategy and is closely related to the one in Bai, Philippon, and Savov (2016),
is conceptually different from our data measure. PINF measures the extent to
which (the stock-specific components of) prices and future cash flows covary,
which is also affected by growth and volatility effects in addition to data. We
develop a tool designed to isolate the latter and show that it has diverged over
the last few decades.

Our analysis also differs in its focus on firm-specific factors. We remove
aggregate/common components from both cash flows and prices, while Bai,
Philippon, and Savov (2016) work with unadjusted cash flows and so pick
up informativeness of prices with respect to both common and stock-specific
factors. There are a couple of other measurement differences as well. First, we
work with MktV al

Assets
in levels, rather than logs, to be consistent with our structural

model. Furthermore, the price informativeness measure in Bai, Philippon, and
Savov (2016) is obtained by scaling the regression coefficient of the current
price by the unconditional standard deviation of prices, while our structural
framework suggests scaling by the standard deviation of prices conditional on
the controls. These adjustments tighten the connection to the structural model
and affect magnitudes but, as we will show below, do not significantly change
the overall trends.

Figure 3 plots the trend in the price informativeness measure of Bai,
Philippon, and Savov (2016), estimated decade-by-decade for four subsamples
of firms: Large/High-growth, Large/Low-growth, Small/High-growth and
Small/Low-growth. It shows that informativeness has increased for the
Large/High-growth group, but declined for the others. While Bai, Philippon,
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Figure 3
Price informativeness by firm size and growth
The diamonds represent the estimated price informativeness defined as in Bai, Philippon, and Savov (2016),
along with 95% confidence intervals. For the detailed specification, see Equation (E.2) in Appendix E. Large
firms are the 500 largest firms by market capitalization, and small denotes the rest. Firms in the bottom (top)
30% are labeled high-growth (low-growth) firms. The lines represent fitted trend lines.

and Savov (2016) also note the divergence between firms in and out of the S&P
500, we show that this is a size effect, not an index inclusion effect.17

3.2.2 Comovement, R2, and synchronicity. Many papers have applied
comovement, synchronicity or R2 approaches to measuring stock market
informativeness across countries (Durnev, Morck, and Yeung 2004; Edmans,
Jayaraman, and Schneemeier 2017). These measures are valuable tools for
cross-country analysis of price movements, but are not appropriate for
measuring the precision of data, about one type of firm versus another.
For example, asset comovement (R2) could be high because of aggregate
information is precise, causing many assets to move with that aggregate
information, or because stock-specific information is imprecise. Any mapping
to data precision requires decomposing aggregate and stock-specific data, which
in turn, requires an independent measure of one or the other. Our approach
explicitly constructs that measure and uses the structure of the model to back
out data processing.

Furthermore, an R2 measure shares many of the same interpretation problems
of the price informativeness measure. To see why, note from the pricing
equation (7), if the aggregate cash flow shock ε̄ is observed, the R2 is the
explained sum of squares B2var(ε̄), divided by the total sum of squares,
B2var(ε̄)+C2var(ε)+D2var(x̃). Just like PINF, these quantities depend on
the coefficients, like B and C, which are affected by the amount of data, but
also are contaminated by volatility and scaling terms like growth. For example,
Brogaard et al. (2018) argue that stock return comovement, as measured by

17 Appendix E.2 shows that the informativeness of stocks currently in the S&P 500 is similar to non-S&P 500
stocks with similar characteristics. Furthermore, price informativeness trends consistently over size deciles.
These results suggest that differences in asset characteristics, rather than inclusion in S&P 500 per se, is the
source of the divergence.
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R2, has increased significantly over time, because idiosyncratic price noise
declined.

3.2.3 Absolute price informativeness. Davila and Parlatore (2016b) propose
an alternative measure of “absolute price informativeness,” which captures
the ability of asset prices to aggregate dispersed information. Their measure
is the precision of an unbiased signal of the current cash flow innovation,
constructed from prices. In our setting, this corresponds to �−1

jp , what we call
“price information” in Table 3 and Figure 2.

As Figure 2 shows, absolute price informativeness declines across all four
asset groups. Thus, despite more net private data processed by investors
about stock-specific characteristics (higher Kj ) prices actually became less
accurate as signals (the Davila-Parlatore notion of price informativeness). This
difference arises because the noise component of prices (from the Cj x̃j ) grew
over time and overwhelmed the rising covariance with fundamentals.

This finding differs from Davila and Parlatore (2016b) primarily because
we strip out the aggregate component of prices and cash flows, while they do
not. If we redo their exercise with raw prices and earnings, price information
does show a rising trend. These results suggest that prices may be getting better
at aggregating market information, but are becoming less clear signals about
firm-specific cash flow risk.

3.2.4 Other proxies for data. Many papers explore proxies for information,
including news counts, analyst coverage, advertising, or social media text (see
the examples cited below). Of course, these proxies are useful for qualitative
validation and do not obviate the need for a quantitative measure like ours.
Moreover, while these proxies document interesting cross-sectional patterns,
to the best of our knowledge, none of them focuses on how qualitative patterns
have changed over time, especially over the horizons we are interested in.

Coverage by equity analysts on Wall Street is a natural proxy for information
processing. Hong, Lim, and Stein (2000) and Guo and Mota (Forthcoming)
analyze determinants of coverage, but do not discuss time trends. In Appendix
D, we estimate time trends in analyst coverage (using the I/B/E/S database
of analyst forecasts) and show that there was a sharp increase in the relative
coverage of high-growth firms during the 2000s and 2010s. This is particularly
striking for large firms and the timing of this increase lines up quite well with
the results of our structural approach.

Of course, it is worth noting that analyst coverage is likely a rather crude
measure of data precision. For one, it doesn’t capture variation in quality of
data processing, both in the cross-section and over time. An analyst might be
reporting mostly redundant or low-quality information that does little to reduce
investor uncertainty (in fact, to the extent it disagrees with other analysts’
forecasts, it might even seed uncertainty). Moreover, analyst coverage also
does not capture data processing done in-house by investors (e.g., hedge funds),
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which has arguably displaced work traditionally done by sell-side analysts over
time. This evidence, albeit reassuring and suggestive, neither displaces the need
for a data precision measure nor reveals the source of the divergent data trends.

Firms also use advertising to convey information to outsiders. Chemmanur
and Yan (2019) examine the effect of such advertising on stock prices and find
that the effects are smallest for large/high-growth firms. Our model suggests
that new information, such as that contained in an ad, is likely to have small
effects when the existing information is already of high quality. In other words,
one explanation for findings in Chemmanur and Yan (2019) is that data on large
high-growth firms is relatively abundant, consistent with our results. Note that
similar to the literature on analyst coverage, this paper also focuses on the cross-
section and not changes over time. Nevertheless, the fact that the cross-sectional
evidence is broadly consistent with our story is a reassuring finding.

4. Why Did Large High-Growth Firm Data Become More Abundant?

Our results show that, while asset characteristics did change over this period,
divergence in the price informativeness for Large/High-growth firms came
predominantly from data divergence. This raises an obvious question: why did
so many investors process increasing amounts of data about large high-growth
stocks and not about other assets?

One possibility is that data choices changed over time because the cost of data
changed. For this to explain our findings, the cost of large high-growth firm data
must be falling, relative to the cost of data about other firms. Given that we have
no direct evidence to support or quantify this channel, we focus on the relative
benefit of data on large high-growth firms. Here, our structural framework can
help us talk about how observed changes in asset characteristics should change
the value of data and through that, data choices. This is the approach we take: we
abstract from differences in costs, use the estimates from the structural model
to see whether the model-implied benefit of data has changed in a manner
consistent with observed patterns in data choices across groups. This does
not rule out—and in fact, is complementary to—the possibility of changes in
relative costs.

One might be tempted to look at equilibrium marginal values for this purpose.
However, they are not very useful in predicting the amount of data allocated
to different assets. This is because equilibrium forces push to equate marginal
values across assets. In other words, in equilibrium, agents will process different
amounts of data for different assets up to a point at which the marginal value
of additional data processing is the same. We are interested in explaining how
much data are processed about a particular asset; the equilibrium marginal
value cannot tell us that. The same logic that Berk and Green (2004) applied to
mutual fund flows also applies to data flows: equilibrium forces should equalize
marginal returns.
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If the equilibrium marginal value does not reliably explain the amount of data
processing, what does? One candidate is the initial value of data, defined as the
value of the first increment of precision, that is, the marginal utility gain from
a unit of data in a hypothetical world where no one else processed any data on
that asset. The basic idea is that assets with the highest initial value will see the
most amount of data processed (even if all assets have the same marginal value
in equilibrium).18 If the assets for which data processing is high also have high
initial values of information, this could explain the data divergence we see in
the previous section.

We use the model to estimate the initial value of one unit of processed data
(one precision unit) about each asset type, in each decade. We find that the
value of learning about large firms rose substantially over this period, both in
absolute terms and relative to small firms. The divergence in data value was
driven by the increase in large firms’ relative size. This surge in the relative
size of large firms has been documented by the firm dynamics literature (e.g.,
Davis and Haltiwanger 2015). The source of this divergence is the subject of
an active debate in the macroeconomics and IO literatures.

4.1 Derivation of initial value of information
To arrive at the value of information, we compute the ex ante expected utility
and determine its sensitivity to information choice. Ex ante expected utility of
investor i from assets in group j is given by

E[Ui
j ]=

1

2
E
[
(�i

j )2
]( r

r−gj

)−2

(�i
j )−1 where �i

j ≡E[Vj −Pjr|I i].

(19)

(�i
j ) is the interim (i.e., conditional on a data set I i) expected profit per share of

asset j , and (�i
j )−1 is investor i’s posterior precision about cash flows. This form

of expected utility arises in a large class of noisy rational expectations models.
Intuitively, investor i’s interim profits are qi

j�
i
j . The optimal asset demand qi

j

is proportional to V ar[V |Ii]−1�i
j where V ar[V |Ii]−1 =

(
r

r−gj

)−2
(�i

j )−1.

Equation (19) directly shows that the marginal utility of a unit increase in

the investor’s posterior precision is 1
2 E

[
(�i

j )2
](

r
r−gj

)−2
. This is the marginal

value of data. Data are more valuable when profits are expected to be high (in

18 This concept is related to what is sometimes referred to as a water-filling equilibrium in the information choice
literature. In equilibrium, agents sequentially choose risk factors to learn about: learning about a risk is like filling
its “bucket” with water. Once sufficiently full, investors move on to filling the next deepest bucket. Our value
of information can be thought of the depth of each bucket, before being filled with water. At the optimum, all
buckets will be filled to the same level (equal marginal value), but the deepest buckets will hold the most amount
of water.
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absolute value)19 and/or more volatile because that makes the expected value
of the squared profit high.

Next, we compute the unconditional expected profit per share. 20

E
[
�i

j

]
= ρ̄

(
r

r−gj

)2

�j x̄j . (20)

Thus, the expected profit per share is the product of the total amount of
asset j risk borne by the average investor, scaled by aggregate risk aversion
ρ̄. Faster growth, or equivalently, a higher valuation-to-cash-flow ratio (higher

r
r−gj

) means greater uncertainty about the discounted values of the entire cash

flow stream, for a given level of uncertainty about current cash flows (�j ).
Similarly, larger supply (higher x̄j ) implies more risk exposure for the average
investor’s portfolio and therefore, a larger compensation in the form of expected
profits. In other words, it is more valuable to learn about large, fast-growing
firms with greater uncertainty.

To compute the initial value of data, we simply replace the equilibrium
information level �j with its value before any data are processed, the prior
variance �jd in (19). Then, compute the partial derivative with respect to
(�i

j )−1. This is what we call the initial value of information (V Ij ):

V Ij =
1

2

[
ρ̄2

(
r

r−gj

)2

�2
jd x̄

2
j

]
+

1

2
�jd (21)

The first term in (21) is related to the mean of the expected profit per share
of asset j from (20). As we saw earlier, higher growth (gj ), larger size (x̄j )
and more uncertainty (�jd ) all raise V Ij , making information about the asset’s
cash flows more valuable. Moreover, these factors enter multiplicatively and
therefore, amplify each other. This interaction makes Large/High-growth firms
valuable for many investors to learn about.

The second term in (21) stems from the variance of expected profits per share.
Quantitatively, however, this term is dominated by the first term, because r

r−gj

and x̄j are both large, relative to other terms. In other words, most of the variation
in the value of the information, both in the cross-section and over time, comes
from changes in the size and scale of profitable trading opportunities.

4.2 Estimation of initial value of information
We construct a time series for the value of information (V Ij ), for each of
the four asset groups by decade. Computing V Ij requires parameters already

19 High negative expected profits are also valuable, because they present profitable shorting opportunities. The 1/2
in Equation (19) comes from subtracting a variance term in the formula for the mean of a lognormal variable.

20 Note E

[
(�i

j
)2
]

=(E
[
�i

j

]
)2 +V ar(�j ). See Appendix C for the derivation of V ar[�i

j
] and other details.
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Figure 4
The initial value of information, by asset class, over time
The initial value of information V Ij is defined in (21). The estimates for gj and �jd are reported in Table 1,
while the estimates for x̄j are reported in Table B1. r =1.025 and ρ̄ =0.02.

estimated in Section 2, as well as risk aversion ρ̄ and the asset supply (x̄j ). To
estimate total supply, we first calculate the average (book) value of assets of
firms in group j by decade. We then project firm-level assets on total assets
of the S&P 500 and estimate the fraction of the variance that is unexplained
by the regressor (i.e., 1-R2). The value of assets associated with stock-specific
component is then obtained by multiplying this factor (the average value for
each group) and the average book value of assets (also by group, reported in
Table B1 in the appendix). Finally, we assume the risk aversion coefficient is
ρ̄ =0.02.

The resultant estimates in Figure 4 offer a simple explanation for why so
much data has been processed for large firms, especially large high-growth
firms. Information about such firms is more valuable. Both size and growth
increase the value of information, which is also amplified by their interaction.
The combination of being large and growing quickly makes a firm a desirable
target for data analysis. In the figure, the value of information for small high-
growth and small low-growth stocks is very close to zero, orders of magnitude
lower than the value of the large firms’ data.

The time series for V Ij in Figure 4 shows a dramatic rise in the value of
large firms’ information during the 1990s and 2000s. These patterns are driven
almost entirely by movements in the first term in (21). Why did this component
rise so sharply and then fall? The increase can be traced to the rise in their
size (i.e., the amount of assets, x̄j in the model): in other words, large firms
grew larger (both in absolute and in relative terms) during the 1990s and 2000s,
raising expected profits per share and making data about them more valuable.
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The value of large low-growth firms’ information surpasses that of large high-
growth firms for one decade in our sample. This was likely the combined result
of a decrease in the growth prospects of large high-growth firms and a rise in the
relative size of large low-growth firms. One possibility is that these changes in
firms’ characteristics was unexpected. If data processing can be frictionlessly
reallocated, one would expect a quick reaction to the surprise change in growth
and size. But, in reality, research expertise takes time to build: time to hire
personnel, and time for them to develop the necessary knowledge. As a result,
it is quite likely that, much like physical capital, information processing is
slow to adjust. A full exploration of this possibility is a question for another
paper.

5. Conclusions

Financial services are increasingly centered on data processing. Making optimal
data choices and valuing data requires knowing the precision of other market
participants’ forecasting data. We develop a tool to measure this data precision.
Our tool can be applied in many possible ways to various groupings of
assets.

Since our framework tells us that size and growth make data valuable, we
use our tool to measure data for firms sorted by size and growth. We find data
divergence: investors seem to be processing more and more data about large
high-growth assets, but not about others.

To explore why data processing might diverge, we use the estimated structural
model to impute a value of data. We find that the value of large high-growth
firm data has increased, primarily because these firms grew larger. Larger
firms are more valuable to learn about, particularly if they are also expected to
grow faster. While our tool has uncovered a new fact and suggested a logical
explanation for it, there surely will be many reasons to want to measure data
along other dimensions, as we continue to learn more about the financial data
economy.

Appendix

A. Structural Framework: Derivations

A.1 Proof of Proposition 1

Solving for the equilibrium follows a standard guess-and-verify procedure, widely used in the noisy
rational expectations equilibrium (REE) literature. First, we express total demand for each asset j ,
as a function of price (Pj1), and equate it with total supply (x̄+ x̃j ). Then, we match coefficients
on both sides of this market clearing condition to obtain a system of equations in Aj ,Bj ,Cj .
Specifically, all constant terms are equated to Aj ; terms that multiply εj1 are equated to Bj , and,
finally, those multiplying x̃j must equal Cj . Simplifying that system of equations yields the stated
result.
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A.2 Decomposing Price Informativeness: Derivation of Equation (13)

PINFj,s =
Cov(d∗

fjs , P ∗
fj1|d∗

fj0,ε̄1)

StdDev(P ∗
fj1|d∗

fj0,ε̄1)
=gs

j

Cov(d∗
fj1 , P ∗

fj1|d∗
fj0,ε̄1)

StdDev(P ∗
fj1|d∗

fj0,ε̄1)
(A.1)

=gs
j

Cov(εfj1 ,Pfj1)

StdDev(Pfj1)
=

gs
j

r

Bj�jd

StdDev(Pfj1)
(A.2)

=
�jd

StdDev(Pfj1)

gs
j

r−gj

(
1− �j

�jd

)
, (A.3)

where the last line uses the expression for Bj from (9).

A.3 Estimating �jp: Derivation of Equation (17)
The stock-specific components, that is, residuals after conditioning on (d∗

fj0,ε̄1), are given by

dfj1 =εfj1 (A.4)

Pfj1 = Ãj +
Bj

r
εfj1 +

Cj

r
x̃fj , (A.5)

where Ãj =−ρ̄
(

r
r−gj

)2
�j x̄j . The coefficients from regressing dfj1 on Pfj1 and a constant are

β̂j =
Cov(εfj1,Pfj1)

V ar(Pfj1)
=

rBj�jd

B2
j �jd +C2

j �jx

,

αj =E(εfj1)−β̂j E
(
Ãj +(Bj/r)εfj1 +(Cj/r)x̃j

)
=−β̂j Ãj ,

where we use E[εfj ]=E[x̃fj ]=0. The estimated residuals and their variance are

efj =εfj1 −αj −β̂j

(
Ãfj +

Bj

r
εfj1 +

Cj

r
x̃fj

)

=

(
1−β̂j

Bj

r

)
εfj1 −β̂j

Cj

r
x̃fj ,

=

(
1− Bj�jd

B2
j �jd +C2

j �jx

Bj

)
εfj1 −

(
Bj�jd

B2
j �jd +C2

j �jx

)
Cj x̃fj ,

=

(
C2

j �jx

B2
j �jd +C2

j �jx

)
εfj1 −

(
B2

j �jd

B2
j �jd +C2

j �jx

)
Cj

Bj

x̃fj ,

=

⎛
⎜⎜⎜⎝

C2
j

B2
j

�jx

�jd +
C2

j

B2
j

�jx

⎞
⎟⎟⎟⎠εfj1 −

⎛
⎜⎜⎜⎝ �jd

�jd +
C2

j

B2
j

�jx

⎞
⎟⎟⎟⎠Cj

Bj

x̃fj ,

⇒ V ar(efj )=

⎛
⎜⎜⎜⎝

C2
j

B2
j

�jx

�jd +
C2

j

B2
j

�jx

⎞
⎟⎟⎟⎠

2

�jd +

⎛
⎜⎜⎜⎝ �jd

�jd +
C2

j

B2
j

�jx

⎞
⎟⎟⎟⎠

2

C2
j

B2
j

�jx . (A.6)
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Figure B1
Time variation in riskless rate
The plots depict a linear trend fitted to the structural estimates of the components of PINF as described in (13)
and decade-specific interest rates. For details of how the interest rates r are estimated, see the main text.

Noting that �jp =
C2

j

B2
j

�jx , we can write (A.6) more succinctly as

V ar(efj )=

(
�jp

�jd +�jp

)2

�jd +

(
�jd

�jd +�jp

)2

�jp =
�jp�jd

�jd +�jp

. (A.7)

Solving (A.7) for �jp yields the expression in (17).

B. Structural Estimation: Details and Additional Results

B.1 Sample size
Table B1 lists the number of firms and average value of assets for the firms in our sample, separately
for each decade and each asset group.

B.2 Time-varying interest and growth rates
In our baseline estimation, we assumed a constant r =1.025 over time. In this subsection, we show
that this is not a critical assumption. In particular, we compute the actual average real interest rate
for each decade (defined as the difference between 1-year nominal Treasury yield from the Federal
Reserve Board’s H15 release and realized inflation over the subsequent year, computed using the
PCE Price index) and use that series to reestimate the growth and information components of
price informativeness (note that the volatility component remains unaffected). Figure B1 plots the
estimated trends for all three components and looks very similar to the baseline results in Figure 1.

B.3 Trends in price informativeness and data
Table B2 shows the point estimates (and associated standard errors) for trends, both in absolute
terms and in differences between trends in the Large/High-growth group and the other groups.

Table B1
Number of firms and total assets by decade and type

1960s 1970s 1980s 1990s 2000s 2010s

Number of firms
Small high growth 1,699 4,739 7,224 9,253 6,444 3,505
Large high growth 1,696 4,229 6,270 7,963 5,662 3,327
Small low growth 1,734 4,664 7,229 9,153 6,382 3,472
Large low growth 1,653 4,040 6,146 7,742 5,534 3,272
Average assets ($ millions)
Small high growth 125 173 109 175 410 599
Large high growth 2,697 3,510 3,521 8,661 12,928 13,802
Small low growth 517 565 852 2,140 4,478 5,398
Large low growth 6,129 11,592 15,726 22,003 52,550 61,588
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Table B2
Trends in price informativeness and data

Trend SE Diff in trend SE

PINF
Small/high growth 0.0004 (0.0011) 0.0024 (0.0023)
Large/high growth 0.0028 (0.0020) - -
Small/ low growth 0.0005 (0.0009) 0.0023 (0.0022)
Large/ low growth 0.0004 (0.0013) 0.0024 (0.0024)
Data
Small/high growth 0.0207 (0.0800) 0.1072 (0.0873)
Large/high growth 0.1279∗∗ (0.0348) - -
Small/ low growth 0.0356 (0.0222) 0.0922∗∗ (0.0413)
Large/ low growth 0.0255 (0.0334) 0.1024∗∗ (0.0482)
Net private data
Small/high growth −113.8 (87.6) 1,488.2∗∗ (527.0)
Large/high growth 1,374.4∗∗ (519.7) - -
Small/ low growth 15.7∗∗ (5.4) 1,358.8∗∗ (519.7)
Large/ low growth 46.8∗∗ (24.3) 1,327.6∗∗ (520.2)

The “Trend” column reports the slope of fitted trendline for PINF, and the “Data” and “Net” rows report private
data from Figures 1 and 2, where the time variable is given by t = {1,2...6}. The third column reports the associated
standard errors. The “Diff in Trend” column shows the point estimates for the difference in slope between the
Large/High-Growth group and the other groups, while the last column reports the associated standard errors. **p

<.05.

B.4 Alternative specification for the common component
In this section, we show that our results about the trends in data processing hold under an alternative
assumption about the common component in firm cash flows. Recall that in the baseline analysis,
we imposed a single factor structure on the common component. Now, we allow for multiple
aggregate factors with group-specific weights. Specifically, the correlated component is now given
by

ε̄fj1 =
H∑

h=1

β̃jhε̄h1 ,

where H is the number of aggregate factors and β̃jh are the group-specific loadings.
Under these conditions, we can strip out the correlated components by taking out a group-year

fixed effect from the observed cash flow and price variables. The rest of the estimation procedure
to estimate PINF and its components remains unchanged. The results from this version are shown
in Figure B2. Comparing it to our baseline results, reveals that the overall pattern of divergence
emerges even under this alternative approach, indicating that our conclusions are not sensitive to
how we adjust for common components.

C. Marginal Low-Growth of Information

C.1 Derivations
Interim expected utility, that is, after chosen information and prices are observed, is

E[Ui
j |Ii ]=

1

2

(E[Vj1 −rPj1|Ii ])2

V ar[Vj1 −rPj1|Ii ]
=

1

2

(�i
j )2(

r
r−gj

)2
(�i

j )−1 (C.1)

Note that, from an ex ante perspective, �i
j is a random variable, since it is a function of the

data observed by i. In our Gaussian setting, the posterior variance, �i
j , depends only on second

moments (which are known ex ante, that is, before data are observed). Ex ante expected utility
therefore becomes
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Figure B2
Data divergence: Using group-year fixed effects
This figure illustrates the structural estimation of Equation (13) after residualizing cash flows and prices using a
group-year fixed effect. For each component, the lines plot a linear trend fitted to our structural estimates.

E[Ui
j ]=E[E[Ui

j |Ii ]]=
1

2

E

[
(�i

j )2
]

(
r

r−gj

)2
(�i

j )−1 (C.2)

=
1

2

⎡
⎢⎣ (E

[
�i

j

]
)2 +V ar(�i

j )(
r

r−gj

)2

⎤
⎥⎦ (�i

j )−1 , (C.3)

The unconditional mean and variance of expected profit per share can be computed directly
from the equilibrium price function:

E

[
�i

j

]
= ρ̄

(
r

r−gj

)2

�j x̄j . (C.4)

V ar(�i
j )=B2

j �jp +

(
r

r−gj

−Bj

)2

(�jd −�i
j )−2

(
r

r−gj

−Bj

)
Bj�

i
j (C.5)

The variance of expected profit depends, among other things, on the equilibrium pricing coefficient
Bj and the noise in the price signal �jp . Higher sensitivity to dividends or more noise leads to
more ex ante variability in expected profits. Substituting the mean and variance of the expected
profit per share into (C.3), we get
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E[Ui
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(

r
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2
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r
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is the marginal value of information for asset j and the precision of the price signal and Hj is an
equilibrium constant that does not depend on i’s information.

Note that Mj is a function, among other things, of the amount of data processed by the average

investor (through �
2
j and �jp terms). The value of information in (21) in the main text removes

these effects by setting �
2
j =�jd . The implications for �jp comes from the pricing coefficients (see

(11)). If no data are processed by others, then no information can be revealed in prices, so Bj =0

and �jp =∞. At the same time, the term

(
1− �j

�jd

)2

becomes zero. Using L’Hospital’s rule, we

can show that the latter dominates and therefore, the product becomes zero in the no-information
limit. Combining, the value of information Mj reduces to the expression for V Ij in (21).

D. Evidence from Analyst Coverage

In this section, we present some evidence suggestive of increased data processing with respect to
high-growth firms. We use the I/B/E/S database to estimate time trends in analyst coverage for
different subsamples of firms. Formally, we regress the number of analysts at the firm-year level
on a growth dummy, interacted with dummies for 5-year windows. We estimate this regression
(allowing for year fixed effects) separately for large firms and for small firms. The coefficient for the
growth dummy thus represents the relative coverage of high-growth firms. The results, presented
in Figure D1 below, show a sharp increase in the relative coverage of high-growth firms. This is
particularly striking for large firms and the timing of this increase lines up quite well with the
results of our structural approach.

Of course, it is worth noting that analyst coverage is likely a rather crude measure of data
precision. For one, the number of analysts doesn’t capture variation in quality of data processing,
both in the cross-section and over time. An analyst might be reporting mostly redundant or low-
quality information that does little to reduce investor uncertainty (in fact, to the extent it disagrees
with other analysts’ forecasts, it might even seed uncertainty). Finally, analyst coverage also does
not capture data processing done in-house by investors (e.g., hedge funds), which has arguably
become more important over time. So while this evidence is reassuring and suggestive, it is not a
substitute for a structural data precision measure.
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Figure D1
Analyst coverage has increased for high-growth firms
The graph reports coefficients βt from the following regression: Number of analystsit = βtGrowthi× Half-
decadet + δt + eit , where Growthi is a dummy equal to one if the firm is a high-growth firm and Half-decadet

is a dummy for each 5-year interval starting from 1985. We estimate the regression separately for large firms
(the red line) and small firms (the blue line).

E. Price Informativeness: Additional Empirical Results

This appendix performs a number of exercises to show the evolution of price informativeness,
defined as in Bai, Philippon, and Savov (2016). It is worth keeping in mind that these reduced-form
patterns are difficult to interpret because they confound changes in information with variation in
other characteristics, precisely why a structural approach is necessary. Having said that, these are
still instructive and helps us connect our findings to various papers studying price informativeness.

Formally, we follow Bai, Philippon, and Savov (2016) and estimate the following
specification:21

E∗
f,j,t+s

A∗
f,j,t

=αj +βj,s ·ln
(

M∗
f,j,t

A∗
f,j,t

)
+γj ·Xf,j,t +εf,j,t+s (E.1)

and define price informativeness as

PINF ∗
j,s =βj,sσ

M∗/A∗
j , (E.2)

where σ
M∗/A∗
j denotes the (unconditional) standard deviation of ln

(
M∗

f,j,t

A∗
f,j,t

)
. Finally, since we

are interested in longer-term trends, we fit the following trendline (separately for each j ):

PINF ∗
j,s,t =PINF ∗

j,s

(
1+T rendj,s · t −1962

2010−1962

)
+ej,s,t (E.3)

The coefficient of interest is PINF ∗
j,s ·T rendj,s , which describes how price informativeness

changes over the period 1962–2010.

21 Throughout this appendix, we work with unadjusted prices and cash flows, that is, without taking out common
components, in order to maintain comparability to Bai, Philippon, and Savov (2016) and the rest of the literature.
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Table E1
The role of firm size in price informativeness

Dep. var Price informativeness

Sample (j ) S&P 500 Large firms Small firms

Horizon s=3 s=5 s=3 s=5 s=3 s=5

(1) (2) (3) (4) (5) (6)

PINF ∗
j,s ·T rendj,s .016∗∗∗ .027∗∗∗ .0035 .019∗∗∗ −.052∗∗∗ −.057∗∗∗

(.006) (.006) (.004) (.0065) (.0038) (.0061)
PINF ∗

j,s .033∗∗∗ .038∗∗∗ .041∗∗∗ .048∗∗∗ .043∗∗∗ .054∗∗∗
(.0023) (.0036) (.0023) (.0038) (.0018) (.0029)

Observations 17,650 16,114 19,193 17,680 61,034 49,238
Sector FE � � � � � �
Firm controls � � � � � �
This table reports the results from estimating (E.3) for different subsamples of firms. Large firms are the 500
largest firms based on market capitalization. Small firms are the rest. Newey-West standard errors with four lags
are in parentheses. ***p <.01.

E.1 Price Informativeness for Largest (Smallest) Firms Has Been Rising (Falling)
To explore the connection between firm size and informativeness, we estimate PINF ∗

j,s and its
trend for two subsamples: “largest” and “small” firms, where “largest” comprises the 500 largest
firms, by market cap, and small the rest.

Table E1 reports the results for S&P 500 firms (columns 1 and 2), largest firms (columns 3
and 4) and small firms (column 5 and 6). The increase in price informativeness is very similar
for S&P 500 firms and the set of largest firms, both for 3- (columns 1 and 3) and 5-year horizons
(columns 2 and 4). By contrast, the price informativeness of small firms, which started from roughly
the same levels as that of largest firms in 1962, fell sharply over this time period. These patterns
are robust to alternative criterion for size: we also split the sample into deciles of size, and find
that moving from the lowest decile to the highest decile of size implies a 17 fold increase in price
informativeness (cf. Appendix E.3).

Next, we explore the relationship between growth and price informativeness. We classify firms
based on their current book-to-market ratio, following Fama and French (1995). Specifically, firms
in the bottom 30% by book-to-market are labeled “high-growth” firms and the top 30% “low-
growth” firms. We then run our price informativeness regressions (E.1) separately for these two
groups.

Columns 1 and 2 of Table E2 reveal that price informativeness declines for both high-growth and
low-growth firms. However, when we split each category between large and small, we find that large
high-growth firms show a significant increase (positive coefficient in column 4), while the small
high-growth group displays the sharpest decline (column 3). In other words, high-growth firms
drive both the rise in price informativeness for large firms and the declining trend for smaller firms.
The informativeness for low-growth firms, both large and small, shows more modest declines. The
rate of change in small low-growth firms’ (column 5) price informativeness is half that of small
high-growth firms (column 3). The divergence is summarized in Figure E1, which plots the linear
trends in price informativeness for large versus small firms (left panel) and for large/high-growth
versus large-low-growth firms (right panel). Both panels exhibit divergence. Recall from Figure 3
that small firms, both high-growth and low-growth, show a declining trend.

E.2 Price Informativeness in the S&P 500
E.2.1 Price informativeness for all public firms (S&P 500 firms) has been falling (rising).

The two panels of Figure E2 plot the fitted values from (E.3) for the subsample of firms
in the S&P 500 (left) and the universe of listed firms (right). The figures show that although
informativeness rose for the S&P 500 firms, it fell for the market as a whole.
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Table E2
The role of firm growth in price informativeness trends

Dep. var Price informativeness (s = 5)

Sample (j ) High-growth Low-growth High-growth– High-growth– Low-growth– Low-growth–
Small Large Small Large

(1) (2) (3) (4) (5) (6)

PINF ∗
j,s ·T rendj,s −.035∗∗∗ −.02∗∗∗ −.058∗∗∗ .04∗∗∗ −.024∗∗∗ −.01∗

(.0083) (.0039) (.011) (.01) (.0044) (.0052)
PINF ∗

j,s .052∗∗∗ .014∗∗∗ .054∗∗∗ .053∗∗∗ .017∗∗∗ .005∗
(.0052) (.0024) (.007) (.0067) (.0027) (.0029)

Observations 31,988 28,066 23,110 8,814 24,823 3,167
Sector FE � � � � � �
Firm controls � � � � � �
This table presents results from estimating Equation (E.3) for different subsamples of firms. Large refers to the
500 largest firms in our data; the rest are labeled Small. High-growth firms are those in the bottom 30% of the
distribution of book-to-market; low-growth firms are in the top 30%. Newey-West standard errors, with four lags
are in parentheses. ***p <.01.
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Figure E1
Large and small firms’ price informativeness diverges
The plots show the trends in price informativeness for horizon s =5, estimated using (E.3), along with 95%
confidence interval based on Newey-West standard errors with 4-year lags. Large refers to the 500 largest firms
in our data; the rest are labeled Small. High-growth firms are those in the bottom 30% of the distribution of
book-to-market; low-growth firms are in the top 30%.

Table E3 quantifies the magnitude of the divergent trends for S&P 500 and non-S&P 500 firms
and shows that they are both statistically significant and economically large. PINF ∗

j,s reports
the magnitude of the predictive power of stock prices for future cash flows at the beginning of
our sample period. Because we normalize the time trend between zero and one, the coefficient
for PINF ∗

j,s ·T rendj,s can be directly interpreted as the total evolution of price informativeness
over the period. For the S&P 500 sample, price informativeness at the 5-year horizon rose by 70%
(0.026/0.038). For the non-S&P 500 firms, it fell by around 80%. In all cases, the evolution is
significant at the 1% level.

To explore whether there is something specific to firms in the S&P 500, we perform two different
tests. First, we look at firms that have never been included in the S&P 500 but are relatively close in
terms of market capitalization and size. These firms exhibit a rise in price informativeness nearly
identical to that of the S&P 500 firms (though the levels of price informativeness are somewhat
different). This suggests that the rising trend in price informativeness has more to do with firm
characteristics (like size) rather than inclusion in the S&P 500 per se (though being part of the
index does increase the level of informativeness somewhat).
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Figure E2
Price informativeness is falling (rising) for all public firms (S&P 500 firms)
The plots depict the trends in price informativeness, estimated using (E.3), along with 95% confidence interval
based on Newey-West standard errors with five lags. The left panel depicts S&P 500 nonfinancial firms, while
the right shows the results for the whole sample.

Table E3
Price informativeness grew (fell) for S&P 500 (other) firms

1960s 1970s 1980s 1990s 2000s 2010s

Number of firms
Small high-growth 1,699 4,739 7,224 9,253 6,444 3,505
Large high-growth 1,696 4,229 6,270 7,963 5,662 3,327
Small low-growth 1,734 4,664 7,229 9,153 6,382 3,472
Large low-growth 1,653 4,040 6,146 7,742 5,534 3,272
Average assets ($ millions)
Small high-growth 125 173 109 175 410 599
Large high-growth 2,697 3,510 3,521 8,661 12,928 13,802
Small low-growth 517 565 852 2,140 4,478 5,398
Large low-growth 6,129 11,592 15,726 22,003 52,550 61,588

This table shows the estimates of (E.3) for different subsamples of firms. Newey-West standard errors, with four
lags are in parentheses. ***p <.01.

We also looked at firms that were in the S&P 500 only for a part of our sample period. We
estimate two separate specifications of Equation (E.1): one for the period of the firm life when it is
in the S&P 500 and one for when it is not. We find that, among the sample of firms that are in the
S&P 500 at some point in their life, the trend in price informativeness is similar for firms currently
in and out of the S&P 500. In levels, price informativeness is actually higher when a firm is not in
the S&P 500, than when they are in.

E.3 Price Informativeness by Size
In this subsection, we first document evolution of firm size during our sample period, and then
show that price informativeness varies systematically by size.

Figure E3 show that S&P 500 firms got larger, relative to non-S&P 500 firms. Here, we use
market capitalization as our measure, but the pattern looks similar with assets as well. As we
showed in Section 4 in the main text, size is a key determinant of the value of information, so this
diverging trend in size helps explain the diverging trends in data.

To study the variation of price informativeness by size, we pool all firm-year observations and
construct deciles of firm size (defined as market value in 2009 dollars). We then run the cross-
sectional regression (E.1) within each bin; that is, the subscript j now refers to a size bin and
estimate PINF ∗

j,s . The results, presented in Figure E4, show a clear pattern: the informativeness
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Figure E3
S&P 500 firms became larger relative to non-S&P 500 firms
The graph shows the average size of S&P 500 and non-S&P 500 firms over time. Size is defined as firms’ total
market value in 2009 dollars. The sample contains publicly listed nonfinancial firms from 1960 to 2010.

Figure E4
Price informativeness by decile
The figure shows the average PINF ∗

j,s,t
, defined as in (E.2), over the entire sample for each size decile. We run

the regression in (E.1) for each year t =1962,...,2010 with horizon s =5 for each size decile. The sample contains
publicly listed nonfinancial firms from 1962 to 2010.

of large firms is significantly higher than those of smaller firms, especially for those at the very
top.
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E.4 Other Possible Data Groupings
One potential concern with our analysis is that growth and size are not the characteristics that
are driving these trends, but are correlated with other, more relevant firm characteristics. In this
subsection, we discuss a couple of other groupings of firms that might help dig into this further.

E.4.1 Technology firms. A potential explanation for the decrease in informativeness for the
market as a whole is that the share of firms, whose shares are more difficult to price—specifically
high-tech firms—has increased over time. Could the increased prevalence of technology firms also
explain divergence? However, we find that quantitatively, the rise of such firms explains little of
the divergence in price informativeness, because the technology-related time trends in the large
firm and small firm samples were not sufficiently different.

We use R&D intensity (R&D spending scaled by assets) as a proxy for high tech intensity.
First, we sort the full sample of firm-year observations into deciles of R&D intensity. We then
estimate price informativeness for each decile, using the same method as before. We find that price
informativeness declines strongly with R&D intensity, as we conjectured.

Next, we analyze changes in R&D composition in the cross-section. We use inclusion in the
S&P 500 as our indicator of being a large firm. In both the S&P 500 and the non-S&P 500 sample,
the fraction of firms investing more in R&D has increased steadily. The share of high-tech firms
has grown slightly more rapidly in the full sample than in the S&P 500 sample. Until the early
1980s, the high-tech shares for S&P 500 and non-S&P 500 firms track each other closely. Some
signs of divergence creep up in the mid-1980s, when the share of high-tech firms increases more
in the whole sample, essentially driven by a rapid entry rate of tech firms. But then, in the early
2000s, the share of tech firms in the S&P 500 increases and converges to that of the non-S&P 500
sample. Thus, a clear trend does not surface in the tech composition of the different subsamples.
We therefore conclude that prevalence of tech firms, while it may explain the average decline in
informativeness, cannot explain the cross-sectional divergence.

Note also that our structural approach explicitly adjusts the effect of differences in fundamentals,
for example, a more volatile or faster-growing cash flow. So, to the extent that technology firms are
different for these reasons, our analysis in that section adjusts for technology intensity and finds
divergence.

E.4.2 Market power. Recent work suggests that market power is rising in the U.S. economy over
the last few decades. In Kacperczyk, Nosal, and Sundaresan (2018), market power considerations
reduces price informativeness: large investors with price impact trade less aggressively on their
information, leading to lower price informativeness. This could be a potential explanation for the
overall decline in price informativeness. This would imply that price informativeness we estimate
is a lower bound (as is our structural measure of data). But, for this to explain why only large,
high-growth firms have much more informative prices than they used to, we would have to argue
that the market for those stocks has become much more competitive over time. To the best of our
knowledge, there is no evidence that suggests enormous increases in competition in some equity
markets and the evaporation of competition in others.
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